On zeros of characters of finite groups
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 801-816 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a finite group $G$ and a non-linear irreducible complex character $\chi $ of $G$ write $\upsilon (\chi )=\{g\in G\mid \chi (g)=0\}$. In this paper, we study the finite non-solvable groups $G$ such that $\upsilon (\chi )$ consists of at most two conjugacy classes for all but one of the non-linear irreducible characters $\chi $ of $G$. In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable $\varphi $-groups. As a corollary, we answer Research Problem $2$ in [Y. Berkovich and L. Kazarin: Finite groups in which the zeros of every non-linear irreducible character are conjugate modulo its kernel. Houston J. Math.\ 24 (1998), 619--630.] posed by Y. Berkovich and L. Kazarin.
For a finite group $G$ and a non-linear irreducible complex character $\chi $ of $G$ write $\upsilon (\chi )=\{g\in G\mid \chi (g)=0\}$. In this paper, we study the finite non-solvable groups $G$ such that $\upsilon (\chi )$ consists of at most two conjugacy classes for all but one of the non-linear irreducible characters $\chi $ of $G$. In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable $\varphi $-groups. As a corollary, we answer Research Problem $2$ in [Y. Berkovich and L. Kazarin: Finite groups in which the zeros of every non-linear irreducible character are conjugate modulo its kernel. Houston J. Math.\ 24 (1998), 619--630.] posed by Y. Berkovich and L. Kazarin.
Classification : 20C15
Keywords: finite groups; characters; zeros
@article{CMJ_2010_60_3_a13,
     author = {Zhang, Jinshan and Shen, Zhencai and Liu, Dandan},
     title = {On zeros of characters of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {801--816},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672416},
     zbl = {1208.20005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a13/}
}
TY  - JOUR
AU  - Zhang, Jinshan
AU  - Shen, Zhencai
AU  - Liu, Dandan
TI  - On zeros of characters of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 801
EP  - 816
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a13/
LA  - en
ID  - CMJ_2010_60_3_a13
ER  - 
%0 Journal Article
%A Zhang, Jinshan
%A Shen, Zhencai
%A Liu, Dandan
%T On zeros of characters of finite groups
%J Czechoslovak Mathematical Journal
%D 2010
%P 801-816
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a13/
%G en
%F CMJ_2010_60_3_a13
Zhang, Jinshan; Shen, Zhencai; Liu, Dandan. On zeros of characters of finite groups. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 801-816. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a13/

[1] Berkovich, Y., Kazarin, L.: Finite groups in which the zeros of every nonlinear irreducible character are conjugate modulo its kernel. Houston J. Math. 24 (1998), 619-630. | MR | Zbl

[2] Bianchi, M., Chillag, D., Gillio, A.: Finite groups in which every irreducible character vanishes on at most two conjugacy classes. Houston J. Math. 26 (2000), 451-461. | MR | Zbl

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Oxford Univ. Press, Oxford and New York (1985). | MR | Zbl

[4] Gagola, S. M.: Characters vanishing on all but two conjugacy classes. Pacific J. Math. 109 (1983), 363-385. | DOI | MR | Zbl

[5] Gallagher, P. X.: Zeros of characters of finite groups. J. Algebra 4 (1965), 42-45. | DOI | MR

[6] Gorenstein, D.: Finite Groups. Harper-Row (1968). | MR | Zbl

[7] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York (1967). | MR | Zbl

[8] Huppert, B., Blackburn, N.: Finite groups III. Springer-Verlag, Berlin, New York (1982). | MR | Zbl

[9] Isaacs, I. M.: Character Theory of Finite Groups. Academic Press, New York (1976). | MR | Zbl

[10] Isaacs, I. M.: Coprime group actions fixing all nonlinear irreducible characters. Canada J. Math. 41 (1989), 68-82. | DOI | MR | Zbl

[11] Kuisch, E. B., Waall, R. W. Van Der: Homogeneous character induction. J. Algebra 149 (1992), 454-471. | DOI | MR

[12] Macdonald, I. D.: Some $p$-groups of Frobenius and extra-special type. Israel J. Math. 40 (1981), 350-364. | DOI | MR | Zbl

[13] Manz, O.: Endliche auflosbare Gruppen deren samtliche charactergrade primzahl-potenzen sind. J. Algebra 94 (1985), 211-255. | DOI | MR

[14] Manz, O., Staszewski, R.: Some applications of a fundamental theorem by Gluck and Wolf in the character theory of finite groups. Math. Z. 192 (1986), 383-389. | DOI | MR | Zbl

[15] Manz, O., Wolf, T. R.: Representations of solvable groups. Cambridge University Press, Cambridge (1993). | MR | Zbl

[16] Mazurov, V. D.: Groups containing a self-centralizing subgroup of order $3$. Algebra and Logic 42 (2003), 29-36. | DOI | MR | Zbl

[17] Noritzsch, T.: Groups having three irreducible character degrees. J. Algebra 175 (1995), 767-798. | DOI | MR

[18] Qian, G. H., Shi, W. J.: A characterization of $ L_2(2^f)$ in terms of the number of character zeros. Contributions to Algebra and Geometry 1 (2009), 1-9. | MR

[19] Qian, G. H., Shi, W. J., You, X. Z.: Conjugacy classes outside a normal subgroup. Comm. Algebra 32 (2004), 4809-4820. | DOI | MR | Zbl

[20] Ren, Y. C., Zhang, J. S.: On zeros of characters of finite groups and solvable $\varphi$-groups. Adv. Math. (China) 37 (2008), 426-436. | MR

[21] Seitz, G.: Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Soc. 19 (1968), 459-461. | DOI | MR | Zbl

[22] Suzuki, M.: Finite groups with nilpotent centralizers. Soc. Trans. Amer. Math. Soc. 99 (1961), 425-470. | DOI | MR | Zbl

[23] Veralopez, A., Veralopez, J.: Classification of finite groups according to the number of conjugacy classes. Israel J. Math. 51 (1985), 305-338. | DOI | MR

[24] Willems, W.: Blocks of defect zero in finite simple groups. J. Algebra 113 (1988), 511-522. | DOI | MR | Zbl

[25] Wong, W. J.: Finite groups with a self-centralizing subgroup of order $4$. J. Austral. Math. Soc. 7 (1967), 570-576. | DOI | MR | Zbl

[26] Zhang, J. S., Shi, J. T., Shen, Z. C.: Finite groups whose irreducible characters vanish on at most three conjugacy classes. (to appear) in J. Group Theory. | MR

[27] Zhang, J. S., Shi, W. J.: Two dual questions on zeros of characters of finite groups. J. Group Theory. 11 (2008), 697-708. | DOI | MR | Zbl