A sharp form of an embedding into multiple exponential spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 751-782 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Omega $ be a bounded open set in $\mathbb R^n$, $n \geq 2$. In a well-known paper {\it Indiana Univ. Math. J.}, 20, 1077--1092 (1971) Moser found the smallest value of $K$ such that $$ \sup \bigg \{\int _{\Omega } \exp \Big (\Big (\frac {\left |f(x)\right |}K\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\|\nabla f\|_{L^n}\leq 1\bigg \}\infty . $$ We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$ $(\alpha
Let $\Omega $ be a bounded open set in $\mathbb R^n$, $n \geq 2$. In a well-known paper {\it Indiana Univ. Math. J.}, 20, 1077--1092 (1971) Moser found the smallest value of $K$ such that $$ \sup \bigg \{\int _{\Omega } \exp \Big (\Big (\frac {\left |f(x)\right |}K\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\|\nabla f\|_{L^n}\leq 1\bigg \}\infty . $$ We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$ $(\alpha $, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.
Classification : 46E30, 46E35
Keywords: Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants
@article{CMJ_2010_60_3_a11,
     author = {\v{C}ern\'y, Robert and Ma\v{s}kov\'a, Silvie},
     title = {A sharp form of an embedding into multiple exponential spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {751--782},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672414},
     zbl = {1224.46064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a11/}
}
TY  - JOUR
AU  - Černý, Robert
AU  - Mašková, Silvie
TI  - A sharp form of an embedding into multiple exponential spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 751
EP  - 782
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a11/
LA  - en
ID  - CMJ_2010_60_3_a11
ER  - 
%0 Journal Article
%A Černý, Robert
%A Mašková, Silvie
%T A sharp form of an embedding into multiple exponential spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 751-782
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a11/
%G en
%F CMJ_2010_60_3_a11
Černý, Robert; Mašková, Silvie. A sharp form of an embedding into multiple exponential spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 751-782. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a11/

[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Springer (1996). | MR

[2] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 39-65 (1996). | DOI | MR | Zbl

[3] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 19-43 (1995). | DOI | MR | Zbl

[4] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 151-181 (1995). | MR | Zbl

[5] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh 126A 995-1009 (1996). | MR | Zbl

[6] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Functional Analysis 146 116-150 (1997). | DOI | MR | Zbl

[7] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces. Proc. Amer. Math. Soc. 126 2417-2425 (1998). | DOI | MR

[8] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 119-128 (1995). | MR | Zbl

[9] Fusco, N., Lions, P. L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Amer. Math. Soc. 124 561-565 (1996). | DOI | MR | Zbl

[10] Hedberg, L. I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 505-512 (1972). | DOI | MR

[11] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 196-227 (2003). | DOI | MR | Zbl

[12] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 1077-1092 (1971). | DOI | MR

[13] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Ineq. Appl. 2 391-467 (July 1999). | MR | Zbl

[14] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure Appl. Math. (1991). | MR | Zbl

[15] Strichartz, R. S.: A note on Trudinger's extension of Sobolev's inequality. Indiana Univ. Math. J. 21 841-842 (1972). | DOI | MR

[16] Talenti, G.: Inequalities in rearrangement invariant function spaces. Nonlinear Analysis, Function Spaces and Applications 5 177-230 (1994), Prometheus Publ. House Prague. | MR | Zbl

[17] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473-484 (1967). | MR | Zbl

[18] Yudovich, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 746-749 (1961). | Zbl