On Denjoy type extensions of the Pettis integral
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 737-750 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.
In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.
Classification : 26A39, 26B30, 46G10
Keywords: scalar derivative; approximate scalar derivative; absolute continuity; bounded variation; $VBG$ function; $ACG$ function; Pettis integral; Denjoy-Pettis integral
@article{CMJ_2010_60_3_a10,
     author = {Naralenkov, Kirill},
     title = {On {Denjoy} type extensions of the {Pettis} integral},
     journal = {Czechoslovak Mathematical Journal},
     pages = {737--750},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672413},
     zbl = {1224.26028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a10/}
}
TY  - JOUR
AU  - Naralenkov, Kirill
TI  - On Denjoy type extensions of the Pettis integral
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 737
EP  - 750
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a10/
LA  - en
ID  - CMJ_2010_60_3_a10
ER  - 
%0 Journal Article
%A Naralenkov, Kirill
%T On Denjoy type extensions of the Pettis integral
%J Czechoslovak Mathematical Journal
%D 2010
%P 737-750
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a10/
%G en
%F CMJ_2010_60_3_a10
Naralenkov, Kirill. On Denjoy type extensions of the Pettis integral. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 737-750. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a10/

[1] Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Am. Math. Soc. 38 (1935), 357-378. | MR | Zbl

[2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. | DOI | MR

[3] Diestel, J.: Sequences and Series in a Banach Space. Gaduate Texts in Mathematics, Vol. 92. Springer-Verlag New York-Heidelberg-Berlin (1984). | DOI | MR

[4] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127-147. | DOI | MR | Zbl

[5] Gámez, J. L., Mendoza, J.: On Denjoy-Dunford and Denjoy-Pettis integrals. Stud. Math. 130 (1998), 115-133. | MR

[6] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. | DOI | MR | Zbl

[7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, Vol. 4. American Mathematical Society (AMS) Providence (1994). | DOI | MR

[8] Hildebrandt, T. H.: Integration in abstract spaces. Bull. Am. Math. Soc. 59 (1953), 111-139. | DOI | MR | Zbl

[9] Lee, Peng Yee, Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series, Vol. 14. Cambridge University Press Cambridge (2000). | MR

[10] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer Berlin-Heidelberg-New York (1977). | MR

[11] Naralenkov, K. M.: On integration by parts for Stieltjes-type integrals of Banach space-valued functions. Real Anal. Exch. 30 (2004/2005), 235-260. | DOI | MR

[12] Pettis, B. J.: On integration in vector spaces. Trans. Am. Math. Soc. 44 (1938), 277-304. | DOI | MR | Zbl

[13] Saks, S.: Theory of the Integral. Dover Publications Inc. New York (1964). | MR

[14] Talagrand, M.: Pettis Integral and Measure Theory. Mem. Am. Math. Soc. No. 307. (1984). | MR

[15] Wang, Chonghu, Yang, Zhenhua: Some topological properties of Banach spaces and Riemann integration. Rocky Mt. J. Math. 30 (2000), 393-400. | DOI | MR | Zbl