On the mean value of the generalized Dirichlet $L$-functions
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 597-620 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
Classification : 11M20
Keywords: generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
@article{CMJ_2010_60_3_a1,
     author = {Ma, Rong and Yi, Yuan and Zhang, Yulong},
     title = {On the mean value of the generalized {Dirichlet} $L$-functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {597--620},
     year = {2010},
     volume = {60},
     number = {3},
     mrnumber = {2672404},
     zbl = {1224.11077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/}
}
TY  - JOUR
AU  - Ma, Rong
AU  - Yi, Yuan
AU  - Zhang, Yulong
TI  - On the mean value of the generalized Dirichlet $L$-functions
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 597
EP  - 620
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/
LA  - en
ID  - CMJ_2010_60_3_a1
ER  - 
%0 Journal Article
%A Ma, Rong
%A Yi, Yuan
%A Zhang, Yulong
%T On the mean value of the generalized Dirichlet $L$-functions
%J Czechoslovak Mathematical Journal
%D 2010
%P 597-620
%V 60
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/
%G en
%F CMJ_2010_60_3_a1
Ma, Rong; Yi, Yuan; Zhang, Yulong. On the mean value of the generalized Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 597-620. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/

[1] Berndt, B. C.: Generalized Dirichlet series and Hecke's functional equation. Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. | MR

[2] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. III. Trans. Amer. Math. Soc. 146 (1969), 323-342. | DOI | MR

[3] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. IV. Trans. Amer. Math. Soc. 149 (1970), 179-185. | MR | Zbl

[4] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet $L$-functions. Comment. Math. Helvetici 56 (1981), 148-161. | DOI | MR | Zbl

[5] Zhang, W. P.: On the second mean value of Dirichlet $L$-functions. Chinese Annals of Mathematics 11A (1990), 121-127. | MR

[6] Zhang, W. P., Yi, Y., He, X. L.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums. Journal of Number Theory 84 (2000), 199-213. | DOI | MR | Zbl

[7] Yi, Y., Zhang, W. P.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums. Advances in Mathematics 31 (2002), 517-526. | MR

[8] Balasubramanian, R.: A note on Dirichlet $L$-functions. Acta Arith. 38 (1980), 273-283. | DOI | MR

[9] Titchmarsh, E. C.: The Theory of the Riemannn Zeta-function. Oxford (1951). | MR

[10] Ivic, A.: The Riemann zeta-function. The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). | MR | Zbl

[11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory. Science Press, Beijing (1991), Chinese.