On the mean value of the generalized Dirichlet $L$-functions
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 597-620
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
Classification :
11M20
Keywords: generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
Keywords: generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
@article{CMJ_2010_60_3_a1,
author = {Ma, Rong and Yi, Yuan and Zhang, Yulong},
title = {On the mean value of the generalized {Dirichlet} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {597--620},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672404},
zbl = {1224.11077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/}
}
Ma, Rong; Yi, Yuan; Zhang, Yulong. On the mean value of the generalized Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 597-620. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/