Keywords: generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
@article{CMJ_2010_60_3_a1,
author = {Ma, Rong and Yi, Yuan and Zhang, Yulong},
title = {On the mean value of the generalized {Dirichlet} $L$-functions},
journal = {Czechoslovak Mathematical Journal},
pages = {597--620},
year = {2010},
volume = {60},
number = {3},
mrnumber = {2672404},
zbl = {1224.11077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/}
}
Ma, Rong; Yi, Yuan; Zhang, Yulong. On the mean value of the generalized Dirichlet $L$-functions. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 597-620. http://geodesic.mathdoc.fr/item/CMJ_2010_60_3_a1/
[1] Berndt, B. C.: Generalized Dirichlet series and Hecke's functional equation. Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. | MR
[2] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. III. Trans. Amer. Math. Soc. 146 (1969), 323-342. | DOI | MR
[3] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. IV. Trans. Amer. Math. Soc. 149 (1970), 179-185. | MR | Zbl
[4] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet $L$-functions. Comment. Math. Helvetici 56 (1981), 148-161. | DOI | MR | Zbl
[5] Zhang, W. P.: On the second mean value of Dirichlet $L$-functions. Chinese Annals of Mathematics 11A (1990), 121-127. | MR
[6] Zhang, W. P., Yi, Y., He, X. L.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums. Journal of Number Theory 84 (2000), 199-213. | DOI | MR | Zbl
[7] Yi, Y., Zhang, W. P.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums. Advances in Mathematics 31 (2002), 517-526. | MR
[8] Balasubramanian, R.: A note on Dirichlet $L$-functions. Acta Arith. 38 (1980), 273-283. | DOI | MR
[9] Titchmarsh, E. C.: The Theory of the Riemannn Zeta-function. Oxford (1951). | MR
[10] Ivic, A.: The Riemann zeta-function. The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). | MR | Zbl
[11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory. Science Press, Beijing (1991), Chinese.