Cohomology of configuration spaces of complex projective spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 411-422 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.
In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.
Classification : 55T10, 57N65
Keywords: configuration spaces; cohomological algebra; complex projective spaces
@article{CMJ_2010_60_2_a8,
     author = {Sohail, Tanweer},
     title = {Cohomology of configuration spaces of complex projective spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {411--422},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657958},
     zbl = {1224.55006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a8/}
}
TY  - JOUR
AU  - Sohail, Tanweer
TI  - Cohomology of configuration spaces of complex projective spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 411
EP  - 422
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a8/
LA  - en
ID  - CMJ_2010_60_2_a8
ER  - 
%0 Journal Article
%A Sohail, Tanweer
%T Cohomology of configuration spaces of complex projective spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 411-422
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a8/
%G en
%F CMJ_2010_60_2_a8
Sohail, Tanweer. Cohomology of configuration spaces of complex projective spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 411-422. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a8/

[1] Arnold, V. I.: The cohomology ring of dyed braids. Mat. Zametki 5 (1969), 227-231. | MR

[2] Artin, E.: Theory of braids. Ann. of Math. 48 (1947), 101-126. | DOI | MR | Zbl

[3] Berceanu, B., Markl, M., Papadima, S.: Multiplicative models for configuration spaces of algebraic varieties. Topology 44 (2005), 415-440. | DOI | MR | Zbl

[4] Cohen, F. R.: The homology of $C_{n+1}$-spaces, $n \geq 0$. In: The homology of iterated loop spaces, Lect. Notes in Math. 207-351 533 (1976).

[5] Cohen, F., Taylor, L.: Computations of Gel'fand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces. In Geometric applications of homology theory, I, Lect. Notes in Math. 106-143 657 (1978). | MR

[6] Fadell, E. R., Hussaini, S. Y.: Geometry and topology of configuration spaces. Springer Monographs in Mathematics. Springer-Verlag Berlin (2001). | MR

[7] Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. 139 (1994), 183-225. | DOI | MR | Zbl

[8] Kriz, I.: On the rational homotopy type of configuration spaces. Ann. Math. 139 (1994), 227-237. | DOI | MR | Zbl

[9] Totaro, B.: Configuration spaces of algebraic varieties. Topology 35 (1996), 1057-1067. | DOI | MR | Zbl