Keywords: Laplacian eigenvalues; Laplacian energy; chromatic number; complement
@article{CMJ_2010_60_2_a7,
author = {Liu, Ying and Sun, Yu Qin},
title = {On the second {Laplacian} spectral moment of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {401--410},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657957},
zbl = {1224.05312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a7/}
}
Liu, Ying; Sun, Yu Qin. On the second Laplacian spectral moment of a graph. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 401-410. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a7/
[1] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. North-Holland New York (1976). | MR
[2] Brooks, R. L.: On coloring the nodes of a network. Proc. Cambridge Philos. Soc. 37 (1941), 194-197. | MR
[3] Brualdi, R. A., Goldwasser, J. L.: Permanent of the Laplacian matrix of trees and bipartite graphs. Discrete Math. 48 (1984), 1-21. | DOI | MR | Zbl
[4] Gutman, I.: Acyclic systems with extremal Hückel $\pi$-electron energy. Theoret. Chim. Acta 45 (1977), 79-87. | DOI
[5] Gutman, I.: The energy of a graph. Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978), 1-22. | MR | Zbl
[6] Gutman, I.: Acyclic conjugated molecules, trees and their energies. J. Math. Chem. 1 (1987), 123-143. | MR
[7] Lazi'c, M. L.: On the Laplacian energy of a graph. Czechoslovak Math. J. 56 (2006), 1207-1213. | DOI | MR | Zbl