On sequential properties of Banach spaces, spaces of measures and densities
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 381-399 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of {\it weak}* continuity of seminorms on the unit ball of $E^*$. \endgraf We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the {\it weak}* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.
We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of {\it weak}* continuity of seminorms on the unit ball of $E^*$. \endgraf We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the {\it weak}* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.
Classification : 46B26, 46E15, 46E27
Keywords: Gelfand-Phillips property; Mazur property; generalized density
@article{CMJ_2010_60_2_a6,
     author = {Borodulin-Nadzieja, Piotr and Plebanek, Grzegorz},
     title = {On sequential properties of {Banach} spaces, spaces of measures and densities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {381--399},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657956},
     zbl = {1224.46031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/}
}
TY  - JOUR
AU  - Borodulin-Nadzieja, Piotr
AU  - Plebanek, Grzegorz
TI  - On sequential properties of Banach spaces, spaces of measures and densities
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 381
EP  - 399
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/
LA  - en
ID  - CMJ_2010_60_2_a6
ER  - 
%0 Journal Article
%A Borodulin-Nadzieja, Piotr
%A Plebanek, Grzegorz
%T On sequential properties of Banach spaces, spaces of measures and densities
%J Czechoslovak Mathematical Journal
%D 2010
%P 381-399
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/
%G en
%F CMJ_2010_60_2_a6
Borodulin-Nadzieja, Piotr; Plebanek, Grzegorz. On sequential properties of Banach spaces, spaces of measures and densities. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 381-399. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/

[1] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on N covered by nowhere dense sets. Fundam. Math. 110 (1980), 11-24. | DOI | MR | Zbl

[2] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. Academic Press London (1983). | MR

[3] Blass, A.: Combinatorial cardinal characteristics of the continuum. (to appear) as a chapter in Handbook of Set Theory. | MR

[4] Borodulin-Nadzieja, P.: On measures on minimally generated Boolean algebras. Topology Appl. 154 (2007), 3107-3124. | DOI | MR

[5] Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. | DOI | MR | Zbl

[6] Drewnowski, L.: On Banach spaces with the Gelfand-Phillips property. Math. Z. 193 (1986), 405-411. | DOI | MR | Zbl

[7] Edgar, G. A.: Measurability in a Banach space II. Indiana Univ. Math. J. 28 (1979), 559-579. | DOI | MR | Zbl

[8] Farkas, B., Soukup, L.: More on cardinal invariants of analytic $P$-ideals. Preprint. | MR

[9] Freedman, W.: An extension property for Banach spaces. Colloq. Math. 91 (2002), 167-182. | DOI | MR | Zbl

[10] Howard, J.: On {\it weak}* separable subsets of dual Banach spaces. Missouri J. Math. Sci 7 (1995), 116-118. | DOI | MR

[11] Hernandez-Hernandez, F., Hrusák, M.: Cardinal invariants of $P$-ideals. Preprint.

[12] Kalenda, O.: Valdivia compact spaces in topology and Banach space theory. Extr. Math. 15 (2000), 1-85. | MR | Zbl

[13] Kalenda, O.: (I)-envelopes of unit balls and James' characterization of reflexivity. Stud. Math. 182 (2007), 29-40. | DOI | MR | Zbl

[14] Koppelberg, S.: Minimally generated Boolean algebras. Order 5 (1989), 393-406. | DOI | MR | Zbl

[15] Koppelberg, S.: Counterexamples in minimally generated Boolean algebras. Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. | MR | Zbl

[16] Koszmider, P.: Forcing minimal extensions of Boolean algebras. Trans. Am. Math. Soc. 351 (1999), 3073-3117. | DOI | MR | Zbl

[17] Leung, D. H.: A Gelfand-Phillips property with respect to the weak topology. Math. Nachr. 149 (1990), 177-181. | DOI | MR | Zbl

[18] Leung, D. H.: On Banach spaces with Mazur's property. Glasg. Math. J. 33 (1991), 51-54. | DOI | MR | Zbl

[19] Mazur, S.: On continuous mappings on Cartesian products. Fundam. Math. 39 (1952), 229-238. | DOI | MR

[20] Mercourakis, S.: Some remarks on countably determined measure and uniform distribution of sequences. Monatsh. Math. 121 (1996), 79-111. | DOI | MR

[21] Plebanek, G.: On the space of continuous functions on a dydadic set. Mathematika 38 (1991), 42-49. | DOI | MR

[22] Plebanek, G.: On some properties of Banach spaces of continuous functions. Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). | Zbl

[23] Plebanek, G.: On Mazur property and realcompactness in $C(K)$. In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). | MR | Zbl

[24] Plebanek, G.: On Pettis integrals with separable range. Colloq. Math. 64 (1993), 71-78. | DOI | MR | Zbl

[25] Plebanek, G.: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. | DOI | MR | Zbl

[26] Sinha, D. P., Arora, K. K.: On the Gelfand-Phillips property in Banach spaces with PRI. Collect. Math. 48 (1997), 347-354. | MR | Zbl

[27] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 307 (1984). | MR | Zbl

[28] Schlumprecht, T.: Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property. Math. Nachr. 157 (1992), 51-64. | DOI | MR | Zbl

[29] Wilansky, A.: Mazur spaces. Int. J. Math. Sci. 4 (1981), 39-53. | DOI | MR | Zbl