Keywords: Gelfand-Phillips property; Mazur property; generalized density
@article{CMJ_2010_60_2_a6,
author = {Borodulin-Nadzieja, Piotr and Plebanek, Grzegorz},
title = {On sequential properties of {Banach} spaces, spaces of measures and densities},
journal = {Czechoslovak Mathematical Journal},
pages = {381--399},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657956},
zbl = {1224.46031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/}
}
TY - JOUR AU - Borodulin-Nadzieja, Piotr AU - Plebanek, Grzegorz TI - On sequential properties of Banach spaces, spaces of measures and densities JO - Czechoslovak Mathematical Journal PY - 2010 SP - 381 EP - 399 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/ LA - en ID - CMJ_2010_60_2_a6 ER -
Borodulin-Nadzieja, Piotr; Plebanek, Grzegorz. On sequential properties of Banach spaces, spaces of measures and densities. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 381-399. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a6/
[1] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on N covered by nowhere dense sets. Fundam. Math. 110 (1980), 11-24. | DOI | MR | Zbl
[2] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. Academic Press London (1983). | MR
[3] Blass, A.: Combinatorial cardinal characteristics of the continuum. (to appear) as a chapter in Handbook of Set Theory. | MR
[4] Borodulin-Nadzieja, P.: On measures on minimally generated Boolean algebras. Topology Appl. 154 (2007), 3107-3124. | DOI | MR
[5] Bourgain, J., Diestel, J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55-58. | DOI | MR | Zbl
[6] Drewnowski, L.: On Banach spaces with the Gelfand-Phillips property. Math. Z. 193 (1986), 405-411. | DOI | MR | Zbl
[7] Edgar, G. A.: Measurability in a Banach space II. Indiana Univ. Math. J. 28 (1979), 559-579. | DOI | MR | Zbl
[8] Farkas, B., Soukup, L.: More on cardinal invariants of analytic $P$-ideals. Preprint. | MR
[9] Freedman, W.: An extension property for Banach spaces. Colloq. Math. 91 (2002), 167-182. | DOI | MR | Zbl
[10] Howard, J.: On {\it weak}* separable subsets of dual Banach spaces. Missouri J. Math. Sci 7 (1995), 116-118. | DOI | MR
[11] Hernandez-Hernandez, F., Hrusák, M.: Cardinal invariants of $P$-ideals. Preprint.
[12] Kalenda, O.: Valdivia compact spaces in topology and Banach space theory. Extr. Math. 15 (2000), 1-85. | MR | Zbl
[13] Kalenda, O.: (I)-envelopes of unit balls and James' characterization of reflexivity. Stud. Math. 182 (2007), 29-40. | DOI | MR | Zbl
[14] Koppelberg, S.: Minimally generated Boolean algebras. Order 5 (1989), 393-406. | DOI | MR | Zbl
[15] Koppelberg, S.: Counterexamples in minimally generated Boolean algebras. Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. | MR | Zbl
[16] Koszmider, P.: Forcing minimal extensions of Boolean algebras. Trans. Am. Math. Soc. 351 (1999), 3073-3117. | DOI | MR | Zbl
[17] Leung, D. H.: A Gelfand-Phillips property with respect to the weak topology. Math. Nachr. 149 (1990), 177-181. | DOI | MR | Zbl
[18] Leung, D. H.: On Banach spaces with Mazur's property. Glasg. Math. J. 33 (1991), 51-54. | DOI | MR | Zbl
[19] Mazur, S.: On continuous mappings on Cartesian products. Fundam. Math. 39 (1952), 229-238. | DOI | MR
[20] Mercourakis, S.: Some remarks on countably determined measure and uniform distribution of sequences. Monatsh. Math. 121 (1996), 79-111. | DOI | MR
[21] Plebanek, G.: On the space of continuous functions on a dydadic set. Mathematika 38 (1991), 42-49. | DOI | MR
[22] Plebanek, G.: On some properties of Banach spaces of continuous functions. Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). | Zbl
[23] Plebanek, G.: On Mazur property and realcompactness in $C(K)$. In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). | MR | Zbl
[24] Plebanek, G.: On Pettis integrals with separable range. Colloq. Math. 64 (1993), 71-78. | DOI | MR | Zbl
[25] Plebanek, G.: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. | DOI | MR | Zbl
[26] Sinha, D. P., Arora, K. K.: On the Gelfand-Phillips property in Banach spaces with PRI. Collect. Math. 48 (1997), 347-354. | MR | Zbl
[27] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 307 (1984). | MR | Zbl
[28] Schlumprecht, T.: Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property. Math. Nachr. 157 (1992), 51-64. | DOI | MR | Zbl
[29] Wilansky, A.: Mazur spaces. Int. J. Math. Sci. 4 (1981), 39-53. | DOI | MR | Zbl