Keywords: simple associative $F$-algebra; ideals; maps preserving ideals
@article{CMJ_2010_60_2_a5,
author = {Wang, Dengyin and Pan, Haishan and Wang, Xuansheng},
title = {Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {371--379},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657955},
zbl = {1224.15005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/}
}
TY - JOUR AU - Wang, Dengyin AU - Pan, Haishan AU - Wang, Xuansheng TI - Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra JO - Czechoslovak Mathematical Journal PY - 2010 SP - 371 EP - 379 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/ LA - en ID - CMJ_2010_60_2_a5 ER -
Wang, Dengyin; Pan, Haishan; Wang, Xuansheng. Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/
[1] Orsina, L., Papi, P: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by class of nilpotence. C. R. Acad. Sci, Paris 330 (2000), 651-655. | DOI | MR | Zbl
[2] Panyushev, D.: Ad-nilpotent ideals of a Borel subalgebra: generators and duality. J. Algebra 274 (2004), 822-846. | DOI | MR | Zbl
[3] Panyushev, D.: Long Abelian ideals. Advances in Mathematics 186 (2004), 307-316. | DOI | MR | Zbl
[4] Panyushev, D., Röhrle, G.: Spherical orbits and Abelian ideals. Advances in Mathematics 159 (2001), 229-246. | DOI | MR
[5] Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups. Advances in Mathematics 187 (2004), 320-361. | DOI | MR | Zbl
[6] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000), 130-141. | DOI | MR | Zbl
[7] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258 (2002), 112-121. | DOI | MR | Zbl
[8] Krattenthaler, C., Orsina, L., Papi, P.: Enumeration of ad-nilpotent $\frak{b}$-ideals for simple Lie algebras. Advances in Applied Mathematics 28 (2002), 478-522. | DOI | MR
[9] Righi, Céline: Ad-nilpotent ideals of a parabolic subalgebra. J. Algebra 319 (2008), 1555-1584. | DOI | MR
[10] Panyushev, D.: Normalizers of ad-nilpotent ideals. European Journal of Combinatorics 27 (2006), 153-178. | DOI | MR | Zbl
[11] Radjavi, H., Šemrl, P.: Non-linear maps preserving solvability. J. Algebra 280 (2004), 624-634. | DOI | MR