Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 371-379 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Cal P$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\Cal P$ are determined completely; Each ideal of $\Cal P$ is shown to be generated by one element; Every non-linear invertible map on $\Cal P$ that preserves ideals is described in an explicit formula.
Let $\Cal P$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\Cal P$ are determined completely; Each ideal of $\Cal P$ is shown to be generated by one element; Every non-linear invertible map on $\Cal P$ that preserves ideals is described in an explicit formula.
Classification : 15A04, 15A27, 16D25, 16S50
Keywords: simple associative $F$-algebra; ideals; maps preserving ideals
@article{CMJ_2010_60_2_a5,
     author = {Wang, Dengyin and Pan, Haishan and Wang, Xuansheng},
     title = {Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {371--379},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657955},
     zbl = {1224.15005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/}
}
TY  - JOUR
AU  - Wang, Dengyin
AU  - Pan, Haishan
AU  - Wang, Xuansheng
TI  - Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 371
EP  - 379
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/
LA  - en
ID  - CMJ_2010_60_2_a5
ER  - 
%0 Journal Article
%A Wang, Dengyin
%A Pan, Haishan
%A Wang, Xuansheng
%T Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
%J Czechoslovak Mathematical Journal
%D 2010
%P 371-379
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/
%G en
%F CMJ_2010_60_2_a5
Wang, Dengyin; Pan, Haishan; Wang, Xuansheng. Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a5/

[1] Orsina, L., Papi, P: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by class of nilpotence. C. R. Acad. Sci, Paris 330 (2000), 651-655. | DOI | MR | Zbl

[2] Panyushev, D.: Ad-nilpotent ideals of a Borel subalgebra: generators and duality. J. Algebra 274 (2004), 822-846. | DOI | MR | Zbl

[3] Panyushev, D.: Long Abelian ideals. Advances in Mathematics 186 (2004), 307-316. | DOI | MR | Zbl

[4] Panyushev, D., Röhrle, G.: Spherical orbits and Abelian ideals. Advances in Mathematics 159 (2001), 229-246. | DOI | MR

[5] Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups. Advances in Mathematics 187 (2004), 320-361. | DOI | MR | Zbl

[6] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000), 130-141. | DOI | MR | Zbl

[7] Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258 (2002), 112-121. | DOI | MR | Zbl

[8] Krattenthaler, C., Orsina, L., Papi, P.: Enumeration of ad-nilpotent $\frak{b}$-ideals for simple Lie algebras. Advances in Applied Mathematics 28 (2002), 478-522. | DOI | MR

[9] Righi, Céline: Ad-nilpotent ideals of a parabolic subalgebra. J. Algebra 319 (2008), 1555-1584. | DOI | MR

[10] Panyushev, D.: Normalizers of ad-nilpotent ideals. European Journal of Combinatorics 27 (2006), 153-178. | DOI | MR | Zbl

[11] Radjavi, H., Šemrl, P.: Non-linear maps preserving solvability. J. Algebra 280 (2004), 624-634. | DOI | MR