Keywords: polydisk; diagonal mapping; Hardy classes; holomorphic spaces
@article{CMJ_2010_60_2_a4,
author = {Shamoyan, Romi F. and Mihi\'c, Olivera R.},
title = {On some inequalities in holomorphic function theory in polydisk related to diagonal mapping},
journal = {Czechoslovak Mathematical Journal},
pages = {351--370},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657954},
zbl = {1224.32004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a4/}
}
TY - JOUR AU - Shamoyan, Romi F. AU - Mihić, Olivera R. TI - On some inequalities in holomorphic function theory in polydisk related to diagonal mapping JO - Czechoslovak Mathematical Journal PY - 2010 SP - 351 EP - 370 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a4/ LA - en ID - CMJ_2010_60_2_a4 ER -
%0 Journal Article %A Shamoyan, Romi F. %A Mihić, Olivera R. %T On some inequalities in holomorphic function theory in polydisk related to diagonal mapping %J Czechoslovak Mathematical Journal %D 2010 %P 351-370 %V 60 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a4/ %G en %F CMJ_2010_60_2_a4
Shamoyan, Romi F.; Mihić, Olivera R. On some inequalities in holomorphic function theory in polydisk related to diagonal mapping. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 351-370. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a4/
[1] Aleksandrov, A. V.: Essays on non locally convex Hardy classes. Lecture notes in Mathematics. Springer-Verlag, Complex Analysis and spectral theory V. V. Havin and N. K. Nikolski (1981), 1-99. | DOI | MR
[2] Amar, E., Menini, C.: A counterexample to the corona theorem for operators on $H^2(D^n)$. Pacific J. Math. 206 (2002), 257-268. | MR
[3] Clark, D.: Restrictions of $H^p$ functions in the polydisk. Amer. J. Math. 110 (1988), 1119-1152. | DOI | MR
[4] Coifman, R., Meyer, Y., Stein, E.: Some new functional spaces and their applications to harmonic analysis. J. Funct. Anal. 62 (1985), 304-335. | DOI | MR
[5] Djrbashian, A. E., Shamoyan, F. A.: Topics in the Theory of $A^p_{\alpha}$ Spaces. Leipzig, Teubner (1988). | MR | Zbl
[6] Duren, P. L., Shields, A. L.: Restriction of $H^p$ functions on the diagonal of the polydisk. Duke Math. J. 42 (1975), 751-753. | DOI | MR
[7] Grafakos, L.: Classical and modern Fourier analysis. Prentice Hall (2004). | MR | Zbl
[8] Jevtic, M., Pavlovic, M., Shamoyan, R.: A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk. Publ. Math. Debrecen 74/1-2 (2009), 1-14. | MR
[9] Mazya, V.: Sobolev Spaces. Springer-Verlag, New York (1985). | MR
[10] Ren, G., Shi, J.: The diagonal mapping in mixed norm spaces. Studia Math. 2 (2004), 103-117. | DOI | MR | Zbl
[11] Rudin, W.: Function theory in polydisks. Benjamin, New York (1969). | MR
[12] Shamoian, F. A.: Embedding theorems and characterization of traces in the spaces $H^p(U^n),$ $p\in (0,\infty)$. Mat. Sbornik, Russian 3 (1978), 709-725.
[13] Shamoian, F. A.: Diagonal mapping and questions of representations in spaces of holomorphic functions in polydisk. Siberian Math. J. Russian 31 (1990), 197-215. | MR
[14] Shamoyan, R. F.: On the action of Hankel operators in bidisk and subspaces in $H^{\infty}$ connected with inner functions in the unit disk. Doklady BAN, Bulgaria 60 (2007), 929-934. | MR | Zbl
[15] Seneta, E.: Regularly varying functions. Springer-Verlag, New York (1976). | MR | Zbl
[16] Shapiro, J.: Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces. Duke Math. J. 43 (1976), 187-202. | DOI | MR
[17] Li, Songxiao, Shamoyan, R. F.: On some properties of a differential operator on the polydisk. Banach J. Math. Anal. (2009), 68-84. | MR
[18] Verbitsky, I.: Multipliers in spaces with fractional norms and inner functions. Siberian Math. J. Russian 150 (1985), 51-72. | MR