The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 327-337 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.
The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.
Classification : 42B20, 46B50, 47B38
Keywords: variable Lebesgue space; weights; Hardy operator; boundedness
@article{CMJ_2010_60_2_a2,
     author = {Bandaliev, Rovshan A.},
     title = {The boundedness of certain sublinear operator in the weighted variable {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {327--337},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657952},
     zbl = {1222.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a2/}
}
TY  - JOUR
AU  - Bandaliev, Rovshan A.
TI  - The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 327
EP  - 337
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a2/
LA  - en
ID  - CMJ_2010_60_2_a2
ER  - 
%0 Journal Article
%A Bandaliev, Rovshan A.
%T The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 327-337
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a2/
%G en
%F CMJ_2010_60_2_a2
Bandaliev, Rovshan A. The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 327-337. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a2/

[1] Abbasova, M. M., Bandaliev, R. A.: On the boundedness of Hardy operator in the weighted variable exponent spaces. Proc. of Nat. Acad. of Sci. of Azerbaijan. Embedding theorems. Harmonic Analysis. 13 (2007), 5-17. | MR

[2] Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136 (2007), 285-320. | DOI | MR | Zbl

[3] Bandaliev, R. A.: On an inequality in Lebesgue space with mixed norm and with variable summability exponent. Mat. Zametki 84 (2008), 323-333 Russian. | MR | Zbl

[4] Bradley, J.: Hardy inequalities with mixed norms. Canadian Mathematical Bull. 21 (1978), 405-408. | DOI | MR | Zbl

[5] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238. | MR

[6] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. | MR

[7] Diening, L., Samko, S.: Hardy inequality in variable exponent Lebesgue spaces. Frac. Calc. and Appl. Anal. 10 (2007), 1-18. | MR | Zbl

[8] Edmunds, D. E., Kokilashvili, V.: Two-weighted inequalities for singular integrals. Canadian Math. Bull. 38 (1995), 295-303. | DOI | MR | Zbl

[9] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: On the boundedness and compactness of weighted Hardy operators in spaces $\smash{L^{p(x)}}$. Georgian Math. J. 12 (2005), 27-44. | MR

[10] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: Bounded and compact integral operators. Math. and Its Applications. 543, Kluwer Acad.Publish., Dordrecht (2002). | MR | Zbl

[11] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: Two-weight estimates in $L^{p(x)}$ spaces for classical integral operators and applications to the norm summability of Fourier trigonometric series. Proc. A. Razmadze Math. Inst. 142 (2006), 123-128. | MR

[12] Gadjiev, A. D., Aliev, I. A.: Weighted estimates for multidimensional singular integrals generated by a generalized shift operator. Mat. Sbornik 183 (1992), 45-66 Russian. | MR

[13] Guliev, V. S.: Two-weight inequalities for integral operators in $L_p$-spaces and their applications. Trudy Mat. Inst. Steklov. 204 (1993), 97-116. | MR

[14] Guliev, V. S.: Integral operators on function spaces defined on homogeneous groups and domains in $R^n.$ Doctor's dissertation. Mat. Inst. Steklov. (1994), 1-329.

[15] Harjulehto, P., Hästö, P., Koskenoja, M.: Hardy's inequality in a variable exponent Sobolev space. Georgian Math. J. 12 (2005), 431-442. | MR | Zbl

[16] Kokilashvili, V., Meskhi, A.: Two-weight inequalities for singular integrals defined on homogeneous groups. Proc. A. Razmadze Math. Inst. 112 (1997), 57-90. | MR | Zbl

[17] Kokilashvili, V., Samko, S. G.: Singular integrals in weighted Lebesgue space with variable exponent. Georgian Math. J. 10 (2003), 145-156. | DOI | MR

[18] Kokilashvili, V., Samko, S. G.: The maximal operator in weighted variable spaces on metric measure space. Proc. A. Razmadze Math. Inst. 144 (2007), 137-144. | MR

[19] Kopaliani, T. S.: On some structural properties of Banach function spaces and boundedness of certain integral operators. Czech. Math. J. 54 (2004), 791-805. | DOI | MR | Zbl

[20] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[21] Krbec, M., Opic, B., Pick, L., Rákosník, J.: Some recent results on Hardy type operators in weighted function spaces and related topics. Function spaces, differential operators and nonlinear analysis (Frie4ichroda, 1992). 158-184, Teubner-Texte Math., 133, Teubner, Stuttgart (1993). | MR

[22] Lu, G., Lu, Sh., Yang, D.: Singular integrals and commutators on homogeneous groups. Analysis Math. 28 (2002), 103-134. | DOI | MR | Zbl

[23] Mashiyev, R. A., Çekiç, B., Mamedov, F. I., Ogras, S.: Hardy's inequality in power-type weighted $L^{p(\cdot)}(0, \infty)$ spaces. J. Math. Anal. Appl. 334 (2007), 289-298. | DOI | MR

[24] Maz'ya, V. G.: Sobolev Spaces. Springer-Verlag, Berlin-Heidelberg-New York (1985). | MR | Zbl

[25] Muckenhoupt, B.: Hardy's inequality with weights. Studia Math. 44 (1972), 31-38. | DOI | MR | Zbl

[26] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer-Verlag, Berlin-Heidelberg-New York (1983). | MR | Zbl

[27] Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 18 (1959), 49-65. | DOI | MR | Zbl

[28] Nakano, H.: Modulared semi-ordered linear spaces. Maruzen. Co., Ltd., Tokyo (1950). | MR | Zbl

[29] Nekvinda, A.: Hardy-Littlewood maximal operator in $L^{p(x)}(R^n)$. Math. Ineq. Appl. 7 (2004), 255-265. | MR

[30] Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Math. ser., 219. Longman sci. and tech., Harlow (1990). | MR | Zbl

[31] Orlicz, W.: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200-212. | DOI | Zbl

[32] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical theory. Lecture Notes in Math. 1748. Springer-Verlag, Berlin (2000). | MR

[33] Samko, S. G.: Differentiation and integration of variable order and the spaces $L^{p(x)}$. Proc.Inter.Conf. "Operator theory for Complex and Hypercomplex analysis". 1994, 203-219. Contemp. Math., 212, AMS, Providence, RI, 1998. | MR

[34] Samko, S. G.: Convolution type operators in $L^{p(x)}$. Integ. Trans. and Special Funct. 7 (1998), 123-144. | DOI | MR

[35] Sharapudinov, I. I.: On a topology of the space $L^{p(t)}([0,1])$. Mat. Zametki 26 (1979), 613-637 Russian. | MR

[36] Sharapudinov, I. I.: The basis property of the Haar system in the space $L^{p(t)}([0,1])$ and the principle of localization in the mean. Mat. Sbornik 130 (1986), 275-283 Russian. | MR

[37] Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43 (1994), 187-204. | DOI | MR | Zbl

[38] Zeren, Y., Guliyev, V. S.: Two-weight norm inequalities for some anisotropic sublinear operators. Turkish Math. J. 30 (2006), 329-350. | MR | Zbl

[39] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk Russian 50 (1986), 675-710 Russian. | MR | Zbl