On generalized Jordan derivations of Lie triple systems
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 541-547 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple $\theta $-derivation on a Lie triple system is a $\theta $-derivation.
Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple $\theta $-derivation on a Lie triple system is a $\theta $-derivation.
Classification : 16W25, 17A36, 17A40
Keywords: Lie triple system; $(\varphi, \psi )$-derivation; Jordan triple $(\varphi, \psi )$-derivation; $\theta $-derivation; Jordan triple $\theta $-derivation
@article{CMJ_2010_60_2_a18,
     author = {Najati, Abbas},
     title = {On generalized {Jordan} derivations of {Lie} triple systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {541--547},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657968},
     zbl = {1224.17008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a18/}
}
TY  - JOUR
AU  - Najati, Abbas
TI  - On generalized Jordan derivations of Lie triple systems
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 541
EP  - 547
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a18/
LA  - en
ID  - CMJ_2010_60_2_a18
ER  - 
%0 Journal Article
%A Najati, Abbas
%T On generalized Jordan derivations of Lie triple systems
%J Czechoslovak Mathematical Journal
%D 2010
%P 541-547
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a18/
%G en
%F CMJ_2010_60_2_a18
Najati, Abbas. On generalized Jordan derivations of Lie triple systems. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 541-547. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a18/

[1] Ashraf, M., Al-Shammakh, Wafa S. M.: On generalized $(\theta,\phi)$-derivations in rings. Int. J. Math. Game Theory and Algebra 12 (2002), 295-300. | MR | Zbl

[2] Bertram, W.: The Geometry of Jordan and Lie Structures. In: Lecture Notes in Math. vol. 1754, Springer-Verlag (2000). | MR | Zbl

[3] Brešar, M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003-1006. | DOI | MR

[4] Brešar, M.: Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218-228. | DOI | MR

[5] Brešar, M., Vukman, J.: Jordan $(\theta,\varphi)$-derivations. Glasnik Math. 46 (1991), 13-17. | MR | Zbl

[6] Hvala, B.: Generalized derivations in rings. Comm. Algebra. 26 (1998), 1147-1166. | DOI | MR | Zbl

[7] Herstein, I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1958), 1104-1110. | DOI | MR | Zbl

[8] Jacobson, N.: Lie and Jordan triple systems. Amer. J. Math. 71 (1949), 149-170. | DOI | MR | Zbl

[9] Jacobson, N.: General representation theory of Jordan algebras. Trans. Amer. Math. Soc. 70 (1951), 509-530. | DOI | MR | Zbl

[10] Jing, W., Lu, S.: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math. 7 (2003), 605-613. | DOI | MR | Zbl

[11] Lee, T.-K.: Generalized derivations of left faithful rings. Comm. Algebra. 27 (1999), 4057-4073. | DOI | MR | Zbl

[12] Lister, W. G.: A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217-242. | DOI | MR | Zbl

[13] Liu, C.-K., Shiue, W.-K.: Generalized Jordan triple $(\theta,\phi)$-derivations on semiprime rings. Taiwanese J. Math. 11 (2007), 1397-1406. | DOI | MR

[14] Vukman, J.: A note on generalized derivations of semiprime rings. Taiwanese J. Math. 11 (2007), 367-370. | DOI | MR | Zbl