Keywords: infinite dimensional systems; analytic semigroups; unbounded observation operator; admissibility; fractional power
@article{CMJ_2010_60_2_a17,
author = {Hamid, Bounit and Adberrahim, Driouich and Omar, El-Mennaoui},
title = {A direct approach to the {Weiss} conjecture for bounded analytic semigroups},
journal = {Czechoslovak Mathematical Journal},
pages = {527--539},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657967},
zbl = {1220.47058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/}
}
TY - JOUR AU - Hamid, Bounit AU - Adberrahim, Driouich AU - Omar, El-Mennaoui TI - A direct approach to the Weiss conjecture for bounded analytic semigroups JO - Czechoslovak Mathematical Journal PY - 2010 SP - 527 EP - 539 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/ LA - en ID - CMJ_2010_60_2_a17 ER -
%0 Journal Article %A Hamid, Bounit %A Adberrahim, Driouich %A Omar, El-Mennaoui %T A direct approach to the Weiss conjecture for bounded analytic semigroups %J Czechoslovak Mathematical Journal %D 2010 %P 527-539 %V 60 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/ %G en %F CMJ_2010_60_2_a17
Hamid, Bounit; Adberrahim, Driouich; Omar, El-Mennaoui. A direct approach to the Weiss conjecture for bounded analytic semigroups. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 527-539. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/
[1] Amann, H.: Linear and quasilinear Parabolic Problems. Vol. I. Birkhäuser, Basel (1995). | MR
[2] Arendt, W., Batty, C., Hieber, C., Neubrander, F.: Vector Valued Laplace transforms and Cauchy Problems. Vol. 96 of Monographes in Mathematics. Birkäuser (2001). | MR | Zbl
[3] Balakrishnan, A. V.: Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10 (1960), 419-437. | DOI | MR | Zbl
[4] Engel, K.: On the characterization of admissible control and observation operators. Systems and Control Letters (1998), 34 225-227. | MR | Zbl
[5] Faming, G.: Admissibility of linear systems in Banach spaces. Journal of electronic Science and Technology in China (2004), 75-78.
[6] Gao, M. C., Hou, J. C.: The infinite-time admissibility of observation operators and operator Lyapunov equation. Integral Equations and Operator Theory 35 (1999), 53-64. | DOI | MR
[7] Grabowski, P.: Admissibility of observation functionals. Internat. J. Control 62 (1995), 1163-1173. | DOI | MR | Zbl
[8] Grabowski, P., Callier, F. M.: Admissibility of observation operators: Semigroup criteria for admissibility. Integral Equations Operator Theory 25 (1996), 183-196. | DOI | MR
[9] Haak, B., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces. SIAM J. Control Optimization 45 2094-2118 (2007). | DOI | MR | Zbl
[10] Hansen, S., Weiss, G.: The operator Carleson measure criterion for admissibility of control operators for diagonal semigroups on $L^2$. Systems Control Letters 16 219-227 (1991). | DOI | MR
[11] Jacob, B., Partington, J. R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups. Integral Equations and Operator Theory 40 (2001), 231-243. | DOI | MR | Zbl
[12] Jacob, B., Partington, J. R., Pott, S.: Admissible and weakly admissible observation operators for the right shift semigroup. Proc. Edinb. Math. Soc. 45 (2002), 353-362. | DOI | MR | Zbl
[13] Jacob, B., Zwart, H.: Counterexamples concerning observation operators for $C_0$-semigroups. SIAM J. Control Optim. 43 137-153 (2004). | DOI | MR | Zbl
[14] Komatsu, H.: Fractional power of operators. Pacific J. Math. 19 (1966), 285-346. | DOI | MR
[15] LeMerdy, C.: The Weiss conjecture for bounded analytic semigroups. J. London Math. Soc. 67 (2003), 715-738. | DOI | MR
[16] Partington, J. R., Pott, S.: Admissibility and exact observability of observation operators for semigroups. Irish Math. Soc. Bulletin 55 19-39 (2005). | MR | Zbl
[17] Partington, J. R., Weiss, G.: Admissible observation operators for the right-shift semigroup. Mathematics of Control, Signals and Systems (2000), 13 179-192. | MR | Zbl
[18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin (1983). | MR | Zbl
[19] Staffans, O.: Well-posed linear systems. Cambridge University press, Cambridge (2005). | MR | Zbl
[20] Weiss, G.: Two conjectures on the admissibility of control operators. In Estimation and Control of Distributed Parameter Systems, Birkhäuser Verlag W. Desch, F. Kappel (1991), 367-378. | MR | Zbl
[21] Weiss, G.: Admissibility of unbounded control operators. SIAM Journal Control & Optimization 27 527-545 (1989). | DOI | MR | Zbl
[22] Weiss, G.: Admissibile observation operators for linear semigroups. Israel J. Math. 65 17-43 (1989). | DOI | MR
[23] Zwart, H., Jacob, B., Staffans, O.: Weak admissibility does not imply admissibility for analytic semigroups. Systems Control Letters 48 (2003), 341-350. | DOI | MR | Zbl
[24] Zwart, H. J.: Sufficient Conditions for Admissibility. Systems and Control Letters 54 973-979 (2005). | DOI | MR | Zbl