A direct approach to the Weiss conjecture for bounded analytic semigroups
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 527-539 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^{\infty }$-calculus and is based on elementary analysis.
We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^{\infty }$-calculus and is based on elementary analysis.
Classification : 34K35, 35F50, 35Q93, 47D06, 93B28, 93B36
Keywords: infinite dimensional systems; analytic semigroups; unbounded observation operator; admissibility; fractional power
@article{CMJ_2010_60_2_a17,
     author = {Hamid, Bounit and Adberrahim, Driouich and Omar, El-Mennaoui},
     title = {A direct approach to the {Weiss} conjecture for bounded analytic semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {527--539},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657967},
     zbl = {1220.47058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/}
}
TY  - JOUR
AU  - Hamid, Bounit
AU  - Adberrahim, Driouich
AU  - Omar, El-Mennaoui
TI  - A direct approach to the Weiss conjecture for bounded analytic semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 527
EP  - 539
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/
LA  - en
ID  - CMJ_2010_60_2_a17
ER  - 
%0 Journal Article
%A Hamid, Bounit
%A Adberrahim, Driouich
%A Omar, El-Mennaoui
%T A direct approach to the Weiss conjecture for bounded analytic semigroups
%J Czechoslovak Mathematical Journal
%D 2010
%P 527-539
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/
%G en
%F CMJ_2010_60_2_a17
Hamid, Bounit; Adberrahim, Driouich; Omar, El-Mennaoui. A direct approach to the Weiss conjecture for bounded analytic semigroups. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 527-539. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a17/

[1] Amann, H.: Linear and quasilinear Parabolic Problems. Vol. I. Birkhäuser, Basel (1995). | MR

[2] Arendt, W., Batty, C., Hieber, C., Neubrander, F.: Vector Valued Laplace transforms and Cauchy Problems. Vol. 96 of Monographes in Mathematics. Birkäuser (2001). | MR | Zbl

[3] Balakrishnan, A. V.: Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10 (1960), 419-437. | DOI | MR | Zbl

[4] Engel, K.: On the characterization of admissible control and observation operators. Systems and Control Letters (1998), 34 225-227. | MR | Zbl

[5] Faming, G.: Admissibility of linear systems in Banach spaces. Journal of electronic Science and Technology in China (2004), 75-78.

[6] Gao, M. C., Hou, J. C.: The infinite-time admissibility of observation operators and operator Lyapunov equation. Integral Equations and Operator Theory 35 (1999), 53-64. | DOI | MR

[7] Grabowski, P.: Admissibility of observation functionals. Internat. J. Control 62 (1995), 1163-1173. | DOI | MR | Zbl

[8] Grabowski, P., Callier, F. M.: Admissibility of observation operators: Semigroup criteria for admissibility. Integral Equations Operator Theory 25 (1996), 183-196. | DOI | MR

[9] Haak, B., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces. SIAM J. Control Optimization 45 2094-2118 (2007). | DOI | MR | Zbl

[10] Hansen, S., Weiss, G.: The operator Carleson measure criterion for admissibility of control operators for diagonal semigroups on $L^2$. Systems Control Letters 16 219-227 (1991). | DOI | MR

[11] Jacob, B., Partington, J. R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups. Integral Equations and Operator Theory 40 (2001), 231-243. | DOI | MR | Zbl

[12] Jacob, B., Partington, J. R., Pott, S.: Admissible and weakly admissible observation operators for the right shift semigroup. Proc. Edinb. Math. Soc. 45 (2002), 353-362. | DOI | MR | Zbl

[13] Jacob, B., Zwart, H.: Counterexamples concerning observation operators for $C_0$-semigroups. SIAM J. Control Optim. 43 137-153 (2004). | DOI | MR | Zbl

[14] Komatsu, H.: Fractional power of operators. Pacific J. Math. 19 (1966), 285-346. | DOI | MR

[15] LeMerdy, C.: The Weiss conjecture for bounded analytic semigroups. J. London Math. Soc. 67 (2003), 715-738. | DOI | MR

[16] Partington, J. R., Pott, S.: Admissibility and exact observability of observation operators for semigroups. Irish Math. Soc. Bulletin 55 19-39 (2005). | MR | Zbl

[17] Partington, J. R., Weiss, G.: Admissible observation operators for the right-shift semigroup. Mathematics of Control, Signals and Systems (2000), 13 179-192. | MR | Zbl

[18] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin (1983). | MR | Zbl

[19] Staffans, O.: Well-posed linear systems. Cambridge University press, Cambridge (2005). | MR | Zbl

[20] Weiss, G.: Two conjectures on the admissibility of control operators. In Estimation and Control of Distributed Parameter Systems, Birkhäuser Verlag W. Desch, F. Kappel (1991), 367-378. | MR | Zbl

[21] Weiss, G.: Admissibility of unbounded control operators. SIAM Journal Control & Optimization 27 527-545 (1989). | DOI | MR | Zbl

[22] Weiss, G.: Admissibile observation operators for linear semigroups. Israel J. Math. 65 17-43 (1989). | DOI | MR

[23] Zwart, H., Jacob, B., Staffans, O.: Weak admissibility does not imply admissibility for analytic semigroups. Systems Control Letters 48 (2003), 341-350. | DOI | MR | Zbl

[24] Zwart, H. J.: Sufficient Conditions for Admissibility. Systems and Control Letters 54 973-979 (2005). | DOI | MR | Zbl