Upper quasi continuous maps and quasi continuous selections
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 517-525 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with the existence of a quasi continuous selection of a multifunction for which upper inverse image of any open set with compact complement contains a set of the form $(G\setminus I)\cup J$, where $G$ is open and $I$, $J$ are from a given ideal. The methods are based on the properties of a minimal multifunction which is generated by a cluster process with respect to a system of subsets of the form $(G\setminus I)\cup J$.
The paper deals with the existence of a quasi continuous selection of a multifunction for which upper inverse image of any open set with compact complement contains a set of the form $(G\setminus I)\cup J$, where $G$ is open and $I$, $J$ are from a given ideal. The methods are based on the properties of a minimal multifunction which is generated by a cluster process with respect to a system of subsets of the form $(G\setminus I)\cup J$.
Classification : 26E25, 54C60, 54C65
Keywords: selection; quasi continuity; minimal usco multifunction; cluster point; generalized quasi continuity
@article{CMJ_2010_60_2_a16,
     author = {Matejdes, Milan},
     title = {Upper quasi continuous maps and quasi continuous selections},
     journal = {Czechoslovak Mathematical Journal},
     pages = {517--525},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657966},
     zbl = {1224.54050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a16/}
}
TY  - JOUR
AU  - Matejdes, Milan
TI  - Upper quasi continuous maps and quasi continuous selections
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 517
EP  - 525
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a16/
LA  - en
ID  - CMJ_2010_60_2_a16
ER  - 
%0 Journal Article
%A Matejdes, Milan
%T Upper quasi continuous maps and quasi continuous selections
%J Czechoslovak Mathematical Journal
%D 2010
%P 517-525
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a16/
%G en
%F CMJ_2010_60_2_a16
Matejdes, Milan. Upper quasi continuous maps and quasi continuous selections. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 517-525. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a16/

[1] Cao, J., Moors, W. B.: Quasicontinuous selections of upper continuous set-valued mappings. Real Anal. Exchange 31 (2005-2006), 63-71. | MR

[2] Drewnowski, L., Labuda, I.: On minimal upper semicontinuous compact valued maps. Rocky Mount. J. Math. 20 (1990), 737-752. | DOI | MR | Zbl

[3] Ganguly, D. K., Chandrani, Mitra: Some remarks on $B^*$-continuous functions. Anal. St. Univ. Ali. Cuza, Isai 46 (2000), 331-336. | MR

[4] Ganguly, D. K., Mallick, P.: On generalized continuous multifunctions and their selections. Real Anal. Exchange 33 (2007/2008), 449-456. | MR

[5] Holá, L., Baláž, V., Neubrunn, T.: Remarks on $c$-continuous multifunctions. Acta Math. Univ. Comeniana L-LI (1987), 51-59. | MR

[6] Holá, L., Holý, D.: Minimal usco maps, densely continuous forms and upper semicontinuous functions. Rocky Mount. J. Math. 39 (2009), 545-562. | DOI | MR

[7] Holý, D., Matejíčka, L.: C-upper semicontinuous and C$^{*}$-upper semicontinuous multifunctions. Tatra Mount. Math. Publ. 34 (2006), 159-165. | MR | Zbl

[8] Holý, D., Matejíčka, L.: Quasicontinuous functions, minimal USCO maps and topology of pointwise convergence. Math. Slovaca (accepted). | MR

[9] Matejdes, M.: Sur les seléctors des multifunctions. Math. Slovaca 37 (1987), 111-124. | MR

[10] Matejdes, M.: Continuity of multifunctions. Real Anal. Exchange 19 (1993-94), 394-413. | DOI | MR

[11] Matejdes, M.: Minimality of multifunctions. Real Anal. Exchange 32 (2007), 519-526. | DOI | MR | Zbl

[12] Neubrunn, T.: C-continuity and closed graphs. Čas. pro pěst. mat. 110 (1985), 172-178. | MR | Zbl

[13] Neubrunn, T.: Quasi continuity. Real Anal. Exchange 14 (1988-89), 259-306. | MR