Structure of unitary groups over finite group rings and its application
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 495-512 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$ is a commutative $p$-group with order $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$ is a commutative $p$-group with order $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
Classification : 19G24, 20E42, 94A60
Keywords: finite group ring; BN-pair; authentication code
@article{CMJ_2010_60_2_a14,
     author = {Nan, Jizhu and Qin, Yufang},
     title = {Structure of unitary groups over finite group rings and its application},
     journal = {Czechoslovak Mathematical Journal},
     pages = {495--512},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657964},
     zbl = {1208.20047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a14/}
}
TY  - JOUR
AU  - Nan, Jizhu
AU  - Qin, Yufang
TI  - Structure of unitary groups over finite group rings and its application
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 495
EP  - 512
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a14/
LA  - en
ID  - CMJ_2010_60_2_a14
ER  - 
%0 Journal Article
%A Nan, Jizhu
%A Qin, Yufang
%T Structure of unitary groups over finite group rings and its application
%J Czechoslovak Mathematical Journal
%D 2010
%P 495-512
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a14/
%G en
%F CMJ_2010_60_2_a14
Nan, Jizhu; Qin, Yufang. Structure of unitary groups over finite group rings and its application. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 495-512. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a14/

[1] Brown, K. S.: Buildings. Springer-Verlag New York (1989). | MR | Zbl

[2] Gao, Y.: Computation of the orders of unitary groups over finite local rings. Acta Math. Scientia 25A (2005), 564-568 Chinese. | MR | Zbl

[3] Karpilovsky, G.: Commutative Group Algebra. Marcel Dekker New York (1983). | MR

[4] Wan, Z. X.: Further construction of Cartesian authentication codes from unitary geometry. Designs, Codes and Cryptology 2 (1992), 333-356. | DOI | MR

[5] Wan, Z. X.: Geometry of Classical Groups over Finite Fields. Studentlitteratur Lund (1993). | MR | Zbl

[6] You, H.: Sylow subgroups of classical groups over finite commutative rings. Acta Math. Sinica 39 (1996), 33-40 Chinese. | MR | Zbl

[7] You, H., Nan, J. Z.: Using normal form of matrices over finite fields to construct Cartesian authentication codes. J. Math. Res. Exposition 18 (1998), 341-346. | MR | Zbl

[8] You, H.: Overgroups of symplectic group in linear group over commutative rings. J. Algebra 282 (2004), 23-32. | DOI | MR | Zbl