Existence of perfect matchings in a plane bipartite graph
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 489-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give a necessary and sufficient condition for the existence of perfect matchings in a plane bipartite graph in terms of elementary edge-cut, which extends the result for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang, R. Chen and X. Guo (1985).
We give a necessary and sufficient condition for the existence of perfect matchings in a plane bipartite graph in terms of elementary edge-cut, which extends the result for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang, R. Chen and X. Guo (1985).
Classification :
05C10, 05C70, 05C75
Keywords: elementary edge-cut; hexagonal system; perfect matching; plane bipartite graph
Keywords: elementary edge-cut; hexagonal system; perfect matching; plane bipartite graph
@article{CMJ_2010_60_2_a13,
author = {Che, Zhongyuan},
title = {Existence of perfect matchings in a plane bipartite graph},
journal = {Czechoslovak Mathematical Journal},
pages = {489--494},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657963},
zbl = {1224.05398},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a13/}
}
Che, Zhongyuan. Existence of perfect matchings in a plane bipartite graph. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 489-494. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a13/
[1] Diestel, R.: Graph Theory. Springer-Verlag (2000). | MR | Zbl
[2] Hall, P.: On representatives of subsets. J. London Math. Soc. 10 (1935), 26-30. | DOI | MR | Zbl
[3] Sachs, H.: Perfect matchings in hexagonal systems. Combinatorica 4 (1984), 89-99. | DOI | MR | Zbl
[4] Zhang, F., Chen, R., Guo, X.: Perfect matchings in hexagonal systems. Graphs and Combinatorics 1 (1985), 383-386. | DOI | MR | Zbl
[5] Zhang, H., Zhang, F.: Plane elementary bipartite graphs. Discrete Appl. Math. 105 (2000), 291-311. | DOI | MR | Zbl