Quasi-permutation polynomials
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 457-488 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated.
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated.
Classification : 11T55, 12E05, 12Y05
Keywords: finite fields; permutation polynomials
@article{CMJ_2010_60_2_a12,
     author = {Laohakosol, Vichian and Janphaisaeng, Suphawan},
     title = {Quasi-permutation polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {457--488},
     year = {2010},
     volume = {60},
     number = {2},
     mrnumber = {2657962},
     zbl = {1224.11096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/}
}
TY  - JOUR
AU  - Laohakosol, Vichian
AU  - Janphaisaeng, Suphawan
TI  - Quasi-permutation polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 457
EP  - 488
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/
LA  - en
ID  - CMJ_2010_60_2_a12
ER  - 
%0 Journal Article
%A Laohakosol, Vichian
%A Janphaisaeng, Suphawan
%T Quasi-permutation polynomials
%J Czechoslovak Mathematical Journal
%D 2010
%P 457-488
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/
%G en
%F CMJ_2010_60_2_a12
Laohakosol, Vichian; Janphaisaeng, Suphawan. Quasi-permutation polynomials. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 457-488. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/

[1] Carlitz, L., Lutz, J. A.: A characterization of permutation polynomials over a finite field. Am. Math. Mon. 85 (1978), 746-748. | DOI | MR | Zbl

[2] Chu, W., Golomb, S. W.: Circular Tuscan-$k$ arrays from permutation binomials. J. Comb. Theory, Ser. A 97 (2002), 195-202. | DOI | MR | Zbl

[3] Das, P.: The number of permutation polynomials of a given degree over a finite field. Finite Fields Appl. 8 (2002), 478-490. | MR | Zbl

[4] Gantmacher, F. R.: The Theory of Matrices, Volume I. Chelsea, New York (1977).

[5] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field?. Am. Math. Mon. 95 (1988), 243-246. | DOI | MR | Zbl

[6] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100 (1993), 71-74. | DOI | MR | Zbl

[7] Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley Reading (1983). | MR | Zbl

[8] Small, C.: Permutation binomials. Int. J. Math. Math. Sci. 13 (1990), 337-342. | DOI | MR | Zbl

[9] Wan, D., Lidl, R.: Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure. Monatsh. Math. 112 (1991), 149-163. | DOI | MR

[10] Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific River Edge (2003). | MR | Zbl

[11] Zhou, K.: A remark on linear permutation polynomials. Finite Fields Appl. 14 (2008), 532-536. | DOI | MR