@article{CMJ_2010_60_2_a12,
author = {Laohakosol, Vichian and Janphaisaeng, Suphawan},
title = {Quasi-permutation polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {457--488},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657962},
zbl = {1224.11096},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/}
}
Laohakosol, Vichian; Janphaisaeng, Suphawan. Quasi-permutation polynomials. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 457-488. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a12/
[1] Carlitz, L., Lutz, J. A.: A characterization of permutation polynomials over a finite field. Am. Math. Mon. 85 (1978), 746-748. | DOI | MR | Zbl
[2] Chu, W., Golomb, S. W.: Circular Tuscan-$k$ arrays from permutation binomials. J. Comb. Theory, Ser. A 97 (2002), 195-202. | DOI | MR | Zbl
[3] Das, P.: The number of permutation polynomials of a given degree over a finite field. Finite Fields Appl. 8 (2002), 478-490. | MR | Zbl
[4] Gantmacher, F. R.: The Theory of Matrices, Volume I. Chelsea, New York (1977).
[5] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field?. Am. Math. Mon. 95 (1988), 243-246. | DOI | MR | Zbl
[6] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100 (1993), 71-74. | DOI | MR | Zbl
[7] Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley Reading (1983). | MR | Zbl
[8] Small, C.: Permutation binomials. Int. J. Math. Math. Sci. 13 (1990), 337-342. | DOI | MR | Zbl
[9] Wan, D., Lidl, R.: Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure. Monatsh. Math. 112 (1991), 149-163. | DOI | MR
[10] Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific River Edge (2003). | MR | Zbl
[11] Zhou, K.: A remark on linear permutation polynomials. Finite Fields Appl. 14 (2008), 532-536. | DOI | MR