Keywords: inductive dimension; theorem on dimension-lowering maps; component.
@article{CMJ_2010_60_2_a11,
author = {Krzempek, Jerzy},
title = {Components and inductive dimensions of compact spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {445--456},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657961},
zbl = {1224.54077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a11/}
}
Krzempek, Jerzy. Components and inductive dimensions of compact spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a11/
[1] Arkhangel'skiǐ, A. V.: The spectrum of frequencies of a topological space and the product operation. Tr. Mosk. Mat. Obshch. 40 (1979), 171-206 Russian. | MR
[2] Charalambous, M. G.: Two new inductive dimension functions for topological spaces. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 18 (1975), 15-25. | MR
[3] Charalambous, M. G., Chatyrko, V. A: Some estimates of the inductive dimensions of the union of two sets. Topology Appl. 146-147 (2005), 227-238. | MR | Zbl
[4] Chatyrko, V. A.: Compact spaces with noncoinciding dimensions. Tr. Mosk. Mat. Obshch. 53 (1990), 192-228, 261 Russian English transl.: Trans. Moscow Math. Soc. (1991), 199-236. | MR
[5] Chatyrko, V. A.: On properties of subsets of $[0,\omega_\mathfrak{c}]\times I$. Quest. Answers Gen. Topology 26 (2008), 97-104. | MR
[6] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On an approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$. Topology Appl. 107 (2000), 39-55. | DOI | MR
[7] Chatyrko, V. A., Kozlov, K. L., Pasynkov, B. A.: On another approach to constructing compacta with different dimensions ${\rm dim}$ and ${\rm ind}$. Topology Proc. 25 (2000), 43-72. | MR
[8] Engelking, R.: General Topology. Heldermann Verlag Berlin (1989). | MR | Zbl
[9] Engelking, R.: Theory of Dimensions, Finite and Infinite. Heldermann Lemgo (1995). | MR | Zbl
[10] Fedorchuk, V. V.: Fully closed maps and their applications. Fundam. Prikl. Mat. 9 (2003), 105-235 Russian English transl.: J. Math. Sci. (N. Y.) 136 (2006), 4201-4292. | MR
[11] Filippov, V. V.: On the inductive dimension of the product of bicompacta. Dokl. Akad. Nauk SSSR 202 (1972), 1016-1019 Russian English transl.: Sov. Math., Dokl. 13 (1972), 250-254. | MR | Zbl
[12] Ivanov, A. V.: The dimension of not perfectly normal spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 31 no. 4 (1976), 21-27 Russian English transl.: Moscow Univ. Math. Bull. 31 (1976), 64-69. | MR
[13] Krzempek, J.: Fully closed maps and non-metrizable higher-dimensional Anderson-Choquet continua. Preprint in Math Arxiv. Available at http://arxiv.org/ (arXiv:0805.2087v3) (to appear) in Colloq. Math. | MR
[14] Lokucievskiǐ, O. V.: On the dimension of bicompacta. Dokl. Akad. Nauk SSSR 67 (1949), 217-219 Russian. | MR
[15] Lunc, A. L.: A bicompactum whose inductive dimension is larger than the covering dimension. Dokl. Akad. Nauk SSSR 66 (1949), 801-803 Russian. | MR
[16] Vopěnka, P.: On the dimension of compact spaces. Czechoslovak Math. J. 8 (1958), 319-327 Russian. | MR