Keywords: algebraic connectivity; Laplacian matrix; Laplacian spectral radius; signed domination; total domination
@article{CMJ_2010_60_2_a1,
author = {Shi, Wei and Kang, Liying and Wu, Suichao},
title = {Bounds on {Laplacian} eigenvalues related to total and signed domination of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {315--325},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657951},
zbl = {1224.05319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a1/}
}
TY - JOUR AU - Shi, Wei AU - Kang, Liying AU - Wu, Suichao TI - Bounds on Laplacian eigenvalues related to total and signed domination of graphs JO - Czechoslovak Mathematical Journal PY - 2010 SP - 315 EP - 325 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a1/ LA - en ID - CMJ_2010_60_2_a1 ER -
Shi, Wei; Kang, Liying; Wu, Suichao. Bounds on Laplacian eigenvalues related to total and signed domination of graphs. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 315-325. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a1/
[1] Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., Yuster, R.: Some remarks on domination. J. Graph Theory 46 (2004), 207-210. | DOI | MR | Zbl
[2] Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T.: Total domination in graphs. Networks 10 (1980), 211-219. | DOI | MR | Zbl
[3] Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., Slater, P. J.: Signed domination number of a graph. In: Graph Theory, Combinatorics, and Applications, John Wiley & Sons (1995), 311-322. | MR
[4] Fallat, S. M., Kirkland, S., Pati, S.: On graphs with algebraic connectivity equal to minimum edge density. Linear Algebra Appl. 373 (2003), 31-50. | MR | Zbl
[5] Feng, L., Yu, G., Li, Q.: Minimizing the Laplacian eigenvalues for trees with given domination number. Linear Algebra Appl. 419 (2006), 648-655. | MR | Zbl
[6] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | MR | Zbl
[7] Grone, R., Merris, R.: The Laplacian spectrum of a graph (II). SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | Zbl
[8] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). | MR | Zbl
[9] Henning, M. A., Slater, P. J.: Inequality relation domination parameters in cube graph. Discrete Math. 158 (1996), 87-98. | DOI | MR
[10] Henning, M. A.: Graphs with large total domination number. J. Graph Theory 35 (2000), 21-45. | DOI | MR | Zbl
[11] Lu, M., Liu, H., Tian, F.: Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 402 (2005), 390-396. | MR | Zbl
[12] Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1998), 143-176. | MR
[13] Nikiforov, V.: Bounds on graph eigenvalues I. Linear Algebra Appl. 420 (2007), 667-671. | MR | Zbl