Keywords: Navier-Stokes equations; mild solutions; Stokes operator; extrapolation spaces; $H^\infty $-functional calculus; general unbounded domains; pressure term
@article{CMJ_2010_60_2_a0,
author = {Kunstmann, Peer Christian},
title = {Navier-Stokes equations on unbounded domains with rough initial data},
journal = {Czechoslovak Mathematical Journal},
pages = {297--313},
year = {2010},
volume = {60},
number = {2},
mrnumber = {2657950},
zbl = {1224.35319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a0/}
}
Kunstmann, Peer Christian. Navier-Stokes equations on unbounded domains with rough initial data. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 297-313. http://geodesic.mathdoc.fr/item/CMJ_2010_60_2_a0/
[1] Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 16-98. | DOI | MR | Zbl
[2] Cannone, M.: Ondelettes, paraproduits, et Navier-Stokes. Nouveaux Essais, Paris, Diderot (1995). | MR | Zbl
[3] Constantin, P., Foias, C.: Navier-Stokes equations. Chicago Lectures in Mathematics, University of Chicago Press (1988). | MR | Zbl
[4] Farwig, R., Kozono, H., Sohr, H.: An $L^q$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195 (2005), 21-53. | DOI | MR
[5] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. | DOI | MR | Zbl
[6] Farwig, R., Kozono, H., Sohr, H.: Maximal regularity of the Stokes operator in general unbounded domains of $\Bbb R^n$. H. Amann Functional analysis and evolution equations. The Günter Lumer volume. Basel: Birkhäuser 257-272 (2008). | MR
[7] Giga, Y.: Domains of fractional powers of the Stokes operator in $L_r$ spaces. Arch. Ration. Mech. Anal. 89 (1985), 251-265. | DOI | MR
[8] Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (1985). | MR | Zbl
[9] Haak, B. H., Kunstmann, P. C.: Weighted admissibility and wellposedness of linear systems in Banach spaces. SIAM J. Control Optim. 45 (2007), 2094-2118. | DOI | MR | Zbl
[10] Haak, B. H., Kunstmann, P. C.: On Kato's method for Navier Stokes equations. J. Math. Fluid Mech 11 (2009), 492-535. | DOI | MR
[11] Kalton, N. J., Kunstmann, P. C., Weis, L.: Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators. Math. Ann. 336 (2006), 747-801. | DOI | MR
[12] Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equations 19 (1994), 959-1014. | DOI | MR | Zbl
[13] Kunstmann, P. C.: Maximal $L^p$-regularity for second order elliptic operators with uniformly continuous coefficients on domains, in Iannelli. Mimmo Evolution equations: applications to physics, industry, life sciences and economics, Basel, Birkhäuser., Prog. Nonlinear Differ. Equ. Appl. Vol. 55 293-305 (2003). | MR
[14] Kunstmann, P. C.: $H^\infty$-calculus for the Stokes operator on unbounded domains. Arch. Math. 91 (2008), 178-186. | DOI | MR
[15] Kunstmann, P. C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus. M. Iannelli, R. Nagel, S. Piazzera Functional Analytic Methods for Evolution Equations, Springer Lecture Notes Math. Vol. 1855 65-311 (2004). | DOI | MR
[16] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris, Dunod (1969). | MR | Zbl
[17] Meyer, Y.: Wavelets, paraproducts, and Navier-Stokes equations. R. Bott Current developments in mathematics, 1996. Proceedings of the joint seminar, Cambridge, MA, USA 1996. Cambridge, International Press 105-212 (1997). | MR | Zbl
[18] Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted $L_p$-spaces. Arch. Math. 82 (2004), 415-431. | DOI | MR
[19] Sohr, H.: The Navier-Stokes equations. An elementary functional analytic approach, Basel, Birkhäuser (2001). | MR | Zbl
[20] Triebel, H.: Interpolation, Function Spaces, Differential Operators. North-Holland Mathematical Library. Vol. 18. Amsterdam-New York-Oxford (1978). | MR