Keywords: nonlinear operators; maximal monotone operators; range of maximal monotone operator; an approximation method of maximal monotone operators
@article{CMJ_2010_60_1_a8,
author = {Zagrodny, Dariusz},
title = {On maximal monotone operators with relatively compact range},
journal = {Czechoslovak Mathematical Journal},
pages = {105--116},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595075},
zbl = {1220.47068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/}
}
Zagrodny, Dariusz. On maximal monotone operators with relatively compact range. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/
[1] Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15 (1964), 445-447 German. | DOI | MR | Zbl
[2] Fitzpatrick, S. P., Phelps, R. R.: Bounded approximants to monotone operators on Banach spaces. Ann. Inst. Henri Poincaré 9 (1992), 573-595. | DOI | MR | Zbl
[3] Holmes, R. B.: Geometric Functional Analysis and its Applications. Springer New York (1975). | MR | Zbl
[4] Phelps, R. R.: Lecture on maximal monotone operators. Lecture given at Prague/Paseky, Summer school, arXiv:math/9302209v1 [math.FA] (1993). | MR
[5] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364. Springer Berlin (1989). | MR
[6] Rockafellar, R. T.: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. Math. Ann. 185 (1970), 81-90. | DOI | MR | Zbl
[7] Rudin, W.: Functional Analysis (2nd edition). McGraw-Hill New York (1991). | MR
[8] Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics 1693 (2nd expanded ed.). Springer Berlin (2008). | MR
[9] Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics 1693. Springer Berlin (1998). | MR
[10] Zagrodny, D.: The closure of the domain and the range of a maximal monotone multifunction of type NI. Set-Valued Anal. 16 (2008), 759-783. | DOI | MR | Zbl
[11] Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators. Springer Berlin (1990). | MR | Zbl