On maximal monotone operators with relatively compact range
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 105-116 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that every maximal monotone operator on a real Banach space with relatively compact range is of type NI. Moreover, if the space has a separable dual space then every maximally monotone operator $T$ can be approximated by a sequence of maximal monotone operators of type NI, which converge to $T$ in a reasonable sense (in the sense of Kuratowski-Painleve convergence).
It is shown that every maximal monotone operator on a real Banach space with relatively compact range is of type NI. Moreover, if the space has a separable dual space then every maximally monotone operator $T$ can be approximated by a sequence of maximal monotone operators of type NI, which converge to $T$ in a reasonable sense (in the sense of Kuratowski-Painleve convergence).
Classification : 47H05
Keywords: nonlinear operators; maximal monotone operators; range of maximal monotone operator; an approximation method of maximal monotone operators
@article{CMJ_2010_60_1_a8,
     author = {Zagrodny, Dariusz},
     title = {On maximal monotone operators with relatively compact range},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--116},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595075},
     zbl = {1220.47068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/}
}
TY  - JOUR
AU  - Zagrodny, Dariusz
TI  - On maximal monotone operators with relatively compact range
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 105
EP  - 116
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/
LA  - en
ID  - CMJ_2010_60_1_a8
ER  - 
%0 Journal Article
%A Zagrodny, Dariusz
%T On maximal monotone operators with relatively compact range
%J Czechoslovak Mathematical Journal
%D 2010
%P 105-116
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/
%G en
%F CMJ_2010_60_1_a8
Zagrodny, Dariusz. On maximal monotone operators with relatively compact range. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a8/

[1] Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15 (1964), 445-447 German. | DOI | MR | Zbl

[2] Fitzpatrick, S. P., Phelps, R. R.: Bounded approximants to monotone operators on Banach spaces. Ann. Inst. Henri Poincaré 9 (1992), 573-595. | DOI | MR | Zbl

[3] Holmes, R. B.: Geometric Functional Analysis and its Applications. Springer New York (1975). | MR | Zbl

[4] Phelps, R. R.: Lecture on maximal monotone operators. Lecture given at Prague/Paseky, Summer school, arXiv:math/9302209v1 [math.FA] (1993). | MR

[5] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364. Springer Berlin (1989). | MR

[6] Rockafellar, R. T.: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. Math. Ann. 185 (1970), 81-90. | DOI | MR | Zbl

[7] Rudin, W.: Functional Analysis (2nd edition). McGraw-Hill New York (1991). | MR

[8] Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics 1693 (2nd expanded ed.). Springer Berlin (2008). | MR

[9] Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics 1693. Springer Berlin (1998). | MR

[10] Zagrodny, D.: The closure of the domain and the range of a maximal monotone multifunction of type NI. Set-Valued Anal. 16 (2008), 759-783. | DOI | MR | Zbl

[11] Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators. Springer Berlin (1990). | MR | Zbl