Keywords: eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern
@article{CMJ_2010_60_1_a7,
author = {Kim, In-Jae and Waters, Charles},
title = {Symmetric sign patterns with maximal inertias},
journal = {Czechoslovak Mathematical Journal},
pages = {101--104},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595074},
zbl = {1224.15061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a7/}
}
Kim, In-Jae; Waters, Charles. Symmetric sign patterns with maximal inertias. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 101-104. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a7/
[1] Cavers, M. S., Meulen, K. N. Vander: Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394 (2005), 53-72. | MR
[2] Fonseca, C. M. da: On the inertia sets of some symmetric sign patterns. Czechoslovak Math. J. 56 (2006), 875-883. | DOI | MR | Zbl
[3] Gao, Y., Shao, Y.: The inertia set of nonnegative symmetric sign pattern with zero diagonal. Czechoslovak Math. J. 53 (2003), 925-934. | DOI | MR | Zbl
[4] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge Univeristy Press Cambridge (1985). | MR | Zbl
[5] Hall, F. J., Li, Z.: Inertia sets of symmetric sign pattern matrices. Numer. Math., J. Chin. Univ. (English Ser.) 10 (2001), 226-240. | MR | Zbl
[6] Hall, F. J., Li, Z., Wang, Di: Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153-169. | MR | Zbl
[7] Hall, F. J., Li, Z., Wang, Di: Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153-169. | MR | Zbl