On the diameter of the Banach-Mazur set
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.
On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.
Classification : 03E50, 46B03, 46B20, 46B26
Keywords: Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom
@article{CMJ_2010_60_1_a6,
     author = {Godefroy, Gilles},
     title = {On the diameter of the {Banach-Mazur} set},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--100},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595073},
     zbl = {1224.46012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a6/}
}
TY  - JOUR
AU  - Godefroy, Gilles
TI  - On the diameter of the Banach-Mazur set
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 95
EP  - 100
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a6/
LA  - en
ID  - CMJ_2010_60_1_a6
ER  - 
%0 Journal Article
%A Godefroy, Gilles
%T On the diameter of the Banach-Mazur set
%J Czechoslovak Mathematical Journal
%D 2010
%P 95-100
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a6/
%G en
%F CMJ_2010_60_1_a6
Godefroy, Gilles. On the diameter of the Banach-Mazur set. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a6/

[1] Bačák, M., Hájek, P.: Mazur intersection property for Asplund spaces. J. Funct. Anal. 255 (2008), 2090-2094. | DOI | MR

[2] Finet, C., Godefroy, G.: Biorthogonal systems and big quotient spaces. Contemp. Math. 85 (1989), 87-110. | DOI | MR | Zbl

[3] Foreman, M., Magidor, M., Shelah, S.: Martin's Maximum, saturated ideals, and nonregular ultrafilters. Ann. Math. 127 (1988), 1-47. | DOI | MR | Zbl

[4] Fremlin, D. H., Sersouri, A.: On $\omega$-independence in separable Banach spaces. Q. J. Math. 39 (1988), 323-331. | DOI | MR | Zbl

[5] Godefroy, G., Louveau, A.: Axioms of determinacy and biorthogonal systems. Isr. J. Math. 67 (1989), 109-116. | DOI | MR | Zbl

[6] Godefroy, G., Talagrand, M.: Espaces de Banach représentables. Isr. J. Math. 41 (1982), 321-330. | DOI | MR | Zbl

[7] Granero, A. S., Jimenez-Sevilla, M., Montesinos, A., Moreno, J. P., Plichko, A. N.: On the Kunen-Shelah properties in Banach spaces. Stud. Math. 157 (2003), 97-120. | DOI | MR

[8] Hájek, P., Santalucia, V. Montesinos, Vanderwerff, J., Zízler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics. Springer New York (2008). | MR

[9] Jimenéz-Sevilla, M., Moreno, J. P.: Renorming Banach spaces with the Mazur intersection property. J. Funct. Anal. 144 (1997), 486-504. | DOI | MR

[10] Johnson, W. B., Odell, E.: The diameter of the isomorphism class of a Banach space. Ann. Math. 162 (2005), 423-437. | DOI | MR | Zbl

[11] Kalton, N. J.: Independence in separable Banach spaces. Contemp. Math. 85 (1989), 319-323. | DOI | MR | Zbl

[12] Negrepontis, S.: Banach Spaces and Topology. Handbook of Set-Theoretic Topology. K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 1045-1142. | MR

[13] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods. Math. Ann. 335 (2006), 687-715. | DOI | MR | Zbl

[14] Todorcevic, S.: Biorthogonal systems and quotient spaces via Baire category methods. Math. Ann. 335 (2006), 687-715. | DOI | MR | Zbl