@article{CMJ_2010_60_1_a4,
author = {Volkmann, Lutz},
title = {A bound on the $k$-domination number of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {77--83},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595071},
zbl = {1224.05385},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a4/}
}
Volkmann, Lutz. A bound on the $k$-domination number of a graph. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 77-83. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a4/
[1] Blidia, M., Chellali, M., Volkmann, L.: Bounds of the 2-domination number of graphs. Utilitas Math. 71 (2006), 209-216. | MR | Zbl
[2] Caro, Y., Roditty, Y.: A note on the $k$-domination number of a graph. Int. J. Math. Sci. 13 (1990), 205-206. | DOI | MR | Zbl
[3] Chen, B., Zhou, S.: Upper bounds for $f$-domination number of graphs. Discrete Math. 185 (1998), 239-243. | DOI | MR | Zbl
[4] Cockayne, E. J., Gamble, B., Shepherd, B.: An upper bound for the $k$-domination number of a graph. J. Graph Theory 9 (1985), 533-534. | DOI | MR | Zbl
[5] Favaron, O., Hansberg, A., Volkmann, L.: On $k$-domination and minimum degree in graphs. J. Graph Theory 57 (2008), 33-40. | DOI | MR
[6] Fink, J. F., Jacobson, M. S.: $n$-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985), 283-300. | MR | Zbl
[7] Fink, J. F., Jacobson, M. S.: On $n$-domination, $n$-dependence and forbidden subgraphs. Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985), 301-311. | MR | Zbl
[8] Fink, J. F., Jacobson, M. S., Kinch, L. F., Roberts, J.: On graphs having domination number half their order. Period. Math. Hungar. 16 (1985), 287-293. | DOI | MR | Zbl
[9] Hansberg, A., Volkmann, L.: Upper bounds on the $k$-domination number and the $k$-Roman domination number. Discrete Appl. Math. 157 (2009), 1634-1639. | DOI | MR | Zbl
[10] Ore, O.: Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38 (1962). | MR | Zbl
[11] Payan, C., Xuong, N. H.: Domination-balanced graphs. J. Graph Theory 6 (1982), 23-32. | DOI | MR | Zbl
[12] Stracke, C., Volkmann, L.: A new domination conception. J. Graph Theory 17 (1993), 315-323. | DOI | MR | Zbl
[13] Zhou, S.: On $f$-domination number of a graph. Czech. Math. J. 46 (1996), 489-499. | MR | Zbl
[14] Zhou, S.: Inequalities involving independence domination, $f$-domination, connected and total $f$-domination numbers. Czech. Math. J. 50 (2000), 321-330. | DOI | MR