Composition-diamond lemma for modules
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 59-76 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" left modules (that is, free modules over a free algebra). We first give Chibrikov's Composition-Diamond lemma for modules and then we show that Kang-Lee's Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.
We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" left modules (that is, free modules over a free algebra). We first give Chibrikov's Composition-Diamond lemma for modules and then we show that Kang-Lee's Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.
Classification : 13P10, 16D10, 16S15, 17A01, 17B67
Keywords: Gröbner-Shirshov basis; module; Lie algebra; Kac-Moody algebra; conformal algebra; Sabinin algebra
@article{CMJ_2010_60_1_a3,
     author = {Chen, Yuqun and Chen, Yongshan and Zhong, Chanyan},
     title = {Composition-diamond lemma for modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {59--76},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595070},
     zbl = {1224.16046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a3/}
}
TY  - JOUR
AU  - Chen, Yuqun
AU  - Chen, Yongshan
AU  - Zhong, Chanyan
TI  - Composition-diamond lemma for modules
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 59
EP  - 76
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a3/
LA  - en
ID  - CMJ_2010_60_1_a3
ER  - 
%0 Journal Article
%A Chen, Yuqun
%A Chen, Yongshan
%A Zhong, Chanyan
%T Composition-diamond lemma for modules
%J Czechoslovak Mathematical Journal
%D 2010
%P 59-76
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a3/
%G en
%F CMJ_2010_60_1_a3
Chen, Yuqun; Chen, Yongshan; Zhong, Chanyan. Composition-diamond lemma for modules. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a3/

[1] Bokut, L. A.: Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219. | MR

[2] Bokut, L. A.: Imbeddings into simple associative algebras. Algebra i Logika. 15 (1976), 117-142. | MR

[3] Bokut, L. A., Chen, Yuqun: Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov. Southeast Asian Bull. Math. 31 (2007), 1057-1076. | MR | Zbl

[4] Bokut, L. A., Fong, Y., Ke, W.-F.: Gröbner-Shirshov bases and composition lemma for associative conformal algebras: an example. Contemporary Mathematics N264 (2000), 63-91. | DOI | MR

[5] Bokut, L. A., Klein, A. A.: Serre relations and Gröbner-Shirshov bases for simple Lie algebras. I, II. Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412. | DOI | MR

[6] Bokut, L. A., Klein, A. A.: Gröbner-Shirshov bases for exceptional Lie algebras. I. Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998) 51-57. | MR

[7] Bokut, L. A., Klein, A. A.: Gröbner-Shirshov bases for exceptional Lie algebras $E_6$, $E_7$, and $E_8$. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46.

[8] Bokut, L. A., Malcolson, P.: Gröbner-Shirshov bases for quantum enveloping algebras. Israel J. Math. 96 (1996), 97-113. | DOI | MR

[9] Bokut, L. A., Malcolson, P.: Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54. | MR

[10] Bokut, L. A., Kang, S.-J., Lee, K.-H., Malcolmson, P.: Gröbner-Shirshov bases for Lie super-algebras and their universal enveloping algebras. J. Algebra. 217 (1999), 461-495. | DOI | MR

[11] Chibrikov, E. S.: On free Lie conformal algebras. Vestnik Novosibirsk State University 4 (2004), 65-83.

[12] Cohn, P. M.: Free Rings and Their Relations. Academic Press, second edition (1985). | MR | Zbl

[13] Humphreys, James E.: Introduction to Lie Algebras and Representation Theory. Springer-Verlag (2000), 1970. | MR | Zbl

[14] Kac, V.-G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge, third edition (1990). | Zbl

[15] Kac, V.-G.: Vertex Algebra for Beginners. University lecture series., 10, AMS, Providence, RI (1997). | MR

[16] Kang, S.-J., Lee, K.-H.: Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc. 37 (2000), 55-72. | MR | Zbl

[17] Kang, S.-J., Lee, K.-H.: Gröbner-Shirshov bases for irreducible $sl_{n+1}$-modules. J. Algebra 232 (2000), 1-20. | DOI | MR | Zbl

[18] Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H.: Hecke algebras, Specht modules and Gröbner-Shirshov bases. J. Algebra 252 (2002), 258-292. | DOI | MR | Zbl

[19] Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H.: Representations of Ariki-Koike algebras and Gröbner-Shirshov bases. Proc. London Math. Soc. 89 (2004), 54-70. | MR | Zbl

[20] Lalonde, P., Ram, A.: Standard Lyndon bases of Lie algebras and enveloping algebras. Trans. Amer. Math. Soc. 347 (1995), 1821-1830. | DOI | MR | Zbl

[21] Perez-Izquierdo, J. M.: Algebras, hyperalgebras, nonassociative bialgebras and loops. Advances in Mathematics 208 (2007), 834-876. | DOI | MR | Zbl

[22] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $A^{(1)}_n$. Commun. Algebra. 30 (2002), 2617-2637. | DOI | MR | Zbl

[23] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $C^{(1)}_n$ and $D^{(1)}_n$. Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 2 (2002), 58-70. | MR

[24] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $B^{(1)}_n$. Int. J. Math. Game Theory Algebra. 13 (2003), 117-128. | MR

[25] Roitman, M.: On the free conformal and vertex algebras. J. Algebra. 217 (1999), 496-527. | DOI | MR

[26] Shirshov, A. I.: Some algorithmic problem for Lie algebras. Sibirsk. Mat. Z. 3 (1962), 292-296 Russian; English translation in SIGSAM Bull. 33 (1999), 3-6.