A predator-prey model with combined death and competition terms
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 283-295 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The existence of a positive solution for the generalized predator-prey model for two species $$ \begin{gathered} \Delta u + u(a + g(u,v)) = 0\quad \mbox {in}\ \Omega ,\\ \Delta v + v(d + h(u,v)) = 0\quad \mbox {in} \ \Omega ,\\ u = v = 0\quad \mbox {on}\ \partial \Omega , \end{gathered} $$ are investigated. The techniques used in the paper are the elliptic theory, upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties of the solution of logistic equations.
The existence of a positive solution for the generalized predator-prey model for two species $$ \begin{gathered} \Delta u + u(a + g(u,v)) = 0\quad \mbox {in}\ \Omega ,\\ \Delta v + v(d + h(u,v)) = 0\quad \mbox {in} \ \Omega ,\\ u = v = 0\quad \mbox {on}\ \partial \Omega , \end{gathered} $$ are investigated. The techniques used in the paper are the elliptic theory, upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties of the solution of logistic equations.
Classification : 35J47, 35J57, 35Q92, 92D25
Keywords: predator-prey model; coexistence state
@article{CMJ_2010_60_1_a22,
     author = {Kang, Joon Hyuk and Lee, Jungho},
     title = {A predator-prey model with combined death and competition terms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {283--295},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595089},
     zbl = {1224.35100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a22/}
}
TY  - JOUR
AU  - Kang, Joon Hyuk
AU  - Lee, Jungho
TI  - A predator-prey model with combined death and competition terms
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 283
EP  - 295
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a22/
LA  - en
ID  - CMJ_2010_60_1_a22
ER  - 
%0 Journal Article
%A Kang, Joon Hyuk
%A Lee, Jungho
%T A predator-prey model with combined death and competition terms
%J Czechoslovak Mathematical Journal
%D 2010
%P 283-295
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a22/
%G en
%F CMJ_2010_60_1_a22
Kang, Joon Hyuk; Lee, Jungho. A predator-prey model with combined death and competition terms. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 283-295. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a22/

[1] Cantrell, R., Cosner, C.: On the uniqueness and stability of positive solutions in the Lotka-Volterra competition model with diffusion. Houston J. Math. 15 (1989), 341-361. | MR | Zbl

[2] Cosner, C., Lazer, C.: Stable coexistence states in the Volterra-Lotka competition model with diffusion. Siam J. Appl. Math. 44 (1984), 1112-1132. | DOI | MR | Zbl

[3] Conway, E., Gardner, R., Smoller, J.: Stability and bifurcation of steady state solutions for predator-prey equations. Adv. in Appl. Math. 3 (1982), 288-344. | DOI | MR | Zbl

[4] Dancer, E. N.: On positive solutions of some pair of differential equations. Trans. Am. Math. Soc. 284 (1984), 729-743. | DOI | MR

[5] Dancer, E. N.: On positive solutions of some pair of differential equations II. J. Differ. Equations. 60 (1985), 236-258. | DOI | MR

[6] Kang, J. H.: A cooperative biological model with combined self-limitation and cooperation terms. J. Comput. Math. Optimization 4 (2008), 113-126. | MR

[7] Kang, J. H., Lee, J. H.: Steady state coexistence solutions of reaction-diffusion competition models. Czech. Math. J. 56 (2006), 1165-1183. | DOI | MR | Zbl

[8] Lou, Y.: Necessary and sufficient condition for the existence of positive solutions of certain cooperative system. Nonlinear Analysis, Theory, Methods and Applications 26 (1996), 1079-1095. | MR | Zbl

[9] Dunninger, Dennis: Lecture Note of Applied Analysis. Department of Mathematics, Michigan State University.

[10] Li, L., Logan, R.: Positive solutions to general elliptic competition models. Differ. Integral Equations 4 (1991), 817-834. | MR | Zbl

[11] Mingxin, Wang, Zhengyuan, Li, Qixiao, Ye: The existence of positive solutions for semilinear elliptic systems. Acta Sci. Nat. Univ. Pekin. 28 36-49 (1992).

[12] Li, Zhengyuan, Mottoni, P. De: Bifurcation for some systems of cooperative and predator-prey type. J. Partial Differ. Equations 25-36 (1992). | MR | Zbl