Convergence conditions for Secant-type methods
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 253-272 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.
We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.
Classification : 49M15, 65B05, 65G99, 65H10, 65N30
Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2010_60_1_a20,
     author = {Argyros, Ioannis K. and Hilout, Said},
     title = {Convergence conditions for {Secant-type} methods},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--272},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595087},
     zbl = {1224.65141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
AU  - Hilout, Said
TI  - Convergence conditions for Secant-type methods
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 253
EP  - 272
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/
LA  - en
ID  - CMJ_2010_60_1_a20
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%A Hilout, Said
%T Convergence conditions for Secant-type methods
%J Czechoslovak Mathematical Journal
%D 2010
%P 253-272
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/
%G en
%F CMJ_2010_60_1_a20
Argyros, Ioannis K.; Hilout, Said. Convergence conditions for Secant-type methods. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 253-272. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/

[1] Argyros, I. K.: Polynomial operator equations in abstract spaces and applications. St. Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A. | MR | Zbl

[2] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315-332. | DOI | MR | Zbl

[3] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374-397. | DOI | MR | Zbl

[4] Argyros, I. K.: New sufficient convergence conditions for the Secant method. Chechoslovak Math. J. 55 (2005), 175-187. | DOI | MR | Zbl

[5] Argyros, I. K.: Convergence and Applications of Newton-Type Iterations. Springer-Verlag Publ., New-York (2008). | MR | Zbl

[6] Argyros, I. K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher (2009). | MR

[7] Bosarge, W. E., Falb, P. L.: A multipoint method of third order. J. Optimiz. Th. Appl. 4 (1969), 156-166. | DOI | MR | Zbl

[8] Chandrasekhar, S.: Radiative Transfer. Dover Publ., New-York (1960). | MR

[9] Dennis, J. E.: Toward a unified convergence theory for Newton-like methods. In Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), 425-472. | MR | Zbl

[10] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Solving a special case of conservative problems by Secant-like method. Appl. Math. Cmput. 169 (2005), 926-942. | DOI | MR

[11] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245-254. | DOI | MR

[12] Huang, Z.: A note of Kantorovich theorem for Newton iteration. J. Comput. Appl. Math. 47 (1993), 211-217. | DOI | MR

[13] Kantorovich, L. V., Akilov, G. P.: Functional Analysis. Pergamon Press, Oxford (1982). | MR | Zbl

[14] Laasonen, P.: Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10. | MR | Zbl

[15] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970). | MR | Zbl

[16] Potra, F. A.: Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5 (1985), 71-84. | MR | Zbl

[17] Schmidt, J. W.: Untere Fehlerschranken fur Regula-Falsi Verfahren. Period. Hungar. 9 (1978), 241-247. | DOI | MR

[18] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545-557. | DOI | MR | Zbl

[19] Wolfe, M. A.: Extended iterative methods for the solution of operator equations. Numer. Math. 31 (1978), 153-174. | DOI | MR | Zbl