Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2010_60_1_a20,
author = {Argyros, Ioannis K. and Hilout, Said},
title = {Convergence conditions for {Secant-type} methods},
journal = {Czechoslovak Mathematical Journal},
pages = {253--272},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595087},
zbl = {1224.65141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/}
}
Argyros, Ioannis K.; Hilout, Said. Convergence conditions for Secant-type methods. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 253-272. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a20/
[1] Argyros, I. K.: Polynomial operator equations in abstract spaces and applications. St. Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A. | MR | Zbl
[2] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315-332. | DOI | MR | Zbl
[3] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374-397. | DOI | MR | Zbl
[4] Argyros, I. K.: New sufficient convergence conditions for the Secant method. Chechoslovak Math. J. 55 (2005), 175-187. | DOI | MR | Zbl
[5] Argyros, I. K.: Convergence and Applications of Newton-Type Iterations. Springer-Verlag Publ., New-York (2008). | MR | Zbl
[6] Argyros, I. K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher (2009). | MR
[7] Bosarge, W. E., Falb, P. L.: A multipoint method of third order. J. Optimiz. Th. Appl. 4 (1969), 156-166. | DOI | MR | Zbl
[8] Chandrasekhar, S.: Radiative Transfer. Dover Publ., New-York (1960). | MR
[9] Dennis, J. E.: Toward a unified convergence theory for Newton-like methods. In Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), 425-472. | MR | Zbl
[10] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Solving a special case of conservative problems by Secant-like method. Appl. Math. Cmput. 169 (2005), 926-942. | DOI | MR
[11] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245-254. | DOI | MR
[12] Huang, Z.: A note of Kantorovich theorem for Newton iteration. J. Comput. Appl. Math. 47 (1993), 211-217. | DOI | MR
[13] Kantorovich, L. V., Akilov, G. P.: Functional Analysis. Pergamon Press, Oxford (1982). | MR | Zbl
[14] Laasonen, P.: Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10. | MR | Zbl
[15] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970). | MR | Zbl
[16] Potra, F. A.: Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5 (1985), 71-84. | MR | Zbl
[17] Schmidt, J. W.: Untere Fehlerschranken fur Regula-Falsi Verfahren. Period. Hungar. 9 (1978), 241-247. | DOI | MR
[18] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545-557. | DOI | MR | Zbl
[19] Wolfe, M. A.: Extended iterative methods for the solution of operator equations. Numer. Math. 31 (1978), 153-174. | DOI | MR | Zbl