Intuitionistic $I$-fuzzy topological spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 233-252 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained.
The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained.
Classification : 54A40, 54E15
Keywords: intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology
@article{CMJ_2010_60_1_a19,
     author = {Yan, Cong-hua and Wang, Xiao-ke},
     title = {Intuitionistic $I$-fuzzy topological spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {233--252},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595086},
     zbl = {1224.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a19/}
}
TY  - JOUR
AU  - Yan, Cong-hua
AU  - Wang, Xiao-ke
TI  - Intuitionistic $I$-fuzzy topological spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 233
EP  - 252
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a19/
LA  - en
ID  - CMJ_2010_60_1_a19
ER  - 
%0 Journal Article
%A Yan, Cong-hua
%A Wang, Xiao-ke
%T Intuitionistic $I$-fuzzy topological spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 233-252
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a19/
%G en
%F CMJ_2010_60_1_a19
Yan, Cong-hua; Wang, Xiao-ke. Intuitionistic $I$-fuzzy topological spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 233-252. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a19/

[1] Atanassov, K. T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986), 87-96. | MR | Zbl

[2] Atanassov, K. T.: Intuitionistic Fuzzy Sets. Springer Heidelberg (1999). | MR | Zbl

[3] Birkhoff, G.: Lattice Theory (third revised edition). Am. Math. Soc. Colloquium Pub. 25 Providence (1967). | MR

[4] Chang, C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190. | DOI | MR | Zbl

[5] Çoker, D.: An introduction to intuitionistic fuzzy topological space. Fuzzy Sets Syst. 88 (1997), 81-89. | MR

[6] Çoker, D., Demirci, M.: On intuitionistic fuzzy points. Notes IFS 1-2 (1995), 79-84. | MR

[7] Çoker, D., Demirci, M.: An introduction to intuitionistic fuzzy topological space in Šostak's sense. BUSEFAL 67 (1996), 61-66.

[8] Çoker, D., Demirci, M.: On fuzzy inclusion in the intuitionistic sense. J. Fuzzy Math. 4 (1996), 701-714. | MR

[9] Hanafy, I. M.: Completely continuous functions in intuitionistic fuzzy topological spaces. Czech Math. J. 53(158) (2003), 793-803. | DOI | MR | Zbl

[10] Höhle, U., Rodabaugh, S. E., eds.: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3. Kluwer Academic Publishers Dordrecht (1999). | MR

[11] Fang, Jin-ming: $I$-FTOP is isomorphic to $I$-{\bf FQN} and $I$-{\bf AITOP}. Fuzzy Sets Syst. 147 (2004), 317-325. | MR

[12] Fang, Jinming, Yue, Yueli: Base and subbase in $I$-fuzzy topological spaces. J. Math. Res. Expo. 26 (2006), 89-95. | MR | Zbl

[13] Lee, S. J., Lee, E. P.: On the category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 37 (2000), 63-76. | MR

[14] Lupiáñez, F. G.: Quasicoincidence for intuitionistic fuzzy points. Int. J. Math. Math. Sci. 10 (2005), 1539-1542. | DOI | MR

[15] Lupiáñez, F. G.: Covering properties in intuitionistic fuzzy topological spaces. Kybernetes 36 (2007), 749-753. | DOI | MR

[16] Park, J. H.: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22 (2004), 1039-1046. | DOI | MR | Zbl

[17] Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd: Compactness in intuitionistic fuzzy topological spaces. Int. J. Math. Math. Sci. 1 (2005), 19-32. | MR

[18] Rodabaugh, S. E.: Powerset operator foundations for Poslat fuzzy set theories and topologies. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116. | MR | Zbl

[19] Šostak, A.: On a fuzzy topological structure. Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103. | MR

[20] Xu, Zeshui, Yager, R. R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35 (2006), 417-433. | DOI | MR | Zbl

[21] Ying, Ming-sheng: A new approach for fuzzy topology (I). Fuzzy Sets Syst. 9 (1991), 303-321. | MR

[22] Yue, Yue-li, Fang, Jin-ming: On induced $I$-fuzzy topological spaces. J. Math. Res. Exp. 25 (2005), 665-670 Chinese. | MR