Keywords: (Pietsch) integral polynomial; Banach space not containing $\ell _1$; $p$-dominated polynomial
@article{CMJ_2010_60_1_a18,
author = {Cilia, Raffaella and Guti\'errez, Joaqu{\'\i}n M.},
title = {Integral polynomials on {Banach} spaces not containing $\ell _1$},
journal = {Czechoslovak Mathematical Journal},
pages = {221--231},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595085},
zbl = {1224.46088},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a18/}
}
TY - JOUR AU - Cilia, Raffaella AU - Gutiérrez, Joaquín M. TI - Integral polynomials on Banach spaces not containing $\ell _1$ JO - Czechoslovak Mathematical Journal PY - 2010 SP - 221 EP - 231 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a18/ LA - en ID - CMJ_2010_60_1_a18 ER -
Cilia, Raffaella; Gutiérrez, Joaquín M. Integral polynomials on Banach spaces not containing $\ell _1$. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 221-231. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a18/
[1] Alencar, R.: On reflexivity and basis for ${\mathcal P}(^m E)$. Proc. Roy. Irish Acad. Sect. A 85 (1985), 131-138. | MR
[2] Ansemil, J. M., Floret, K.: The symmetric tensor product of a direct sum of locally convex spaces. Studia Math. 129 (1998), 285-295. | MR | Zbl
[3] Aron, R. M., Berner, P. D.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 106 (1978), 3-24. | DOI | MR | Zbl
[4] Aron, R. M., Hervés, C., Valdivia, M.: Weakly continuous mappings on Banach spaces. J. Funct. Anal. 52 (1983), 189-204. | DOI | MR
[5] Aron, R. M., Prolla, J. B.: Polynomial approximation of differentiable functions on Banach spaces. J. Reine Angew. Math. 313 (1980), 195-216. | MR | Zbl
[6] Blasco, F.: Complementation in spaces of symmetric tensor products and polynomials. Studia Math. 123 (1997), 165-173. | DOI | MR | Zbl
[7] Carando, D., Lassalle, S.: Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 307 (2005), 77-85. | DOI | MR | Zbl
[8] Cardassi, C. S.: Strictly $p$-integral and $p$-nuclear operators, in: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II. Publ. Math. Orsay (1989). | MR
[9] Cilia, R., D'Anna, M., Gutiérrez, J. M.: Polynomial characterization of ${\mathscr L}_\infty$-spaces. J. Math. Anal. Appl. 275 (2002), 900-912. | DOI | MR
[10] Cilia, R., Gutiérrez, J. M.: Polynomial characterization of Asplund spaces. Bull. Belgian Math. Soc. Simon Stevin {12} (2005), 393-400. | DOI | MR
[11] Cilia, R., Gutiérrez, J. M.: Integral and S-factorizable multilinear mappings. Proc. Roy. Soc. Edinburgh 136A (2006), 115-137. | MR
[12] Cilia, R., Gutiérrez, J. M.: Ideals of integral and $r$-factorable polynomials. Bol. Soc. Mat. Mexicana 14, 3a Serie (2008). | MR
[13] Defant, A., Floret, K.: Tensor Norms and Operator Ideals. Math. Studies, vol. 176, North-Holland, Amsterdam (1993). | MR | Zbl
[14] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43 Cambridge University Press, Cambridge, 1995. | MR | Zbl
[15] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Math. Surveys Monographs 15, American Mathematical Society, Providence RI (1977). | MR | Zbl
[16] Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monogr. Math., Springer, Berlin (1999). | MR | Zbl
[17] Emmanuele, G.: Dominated operators on $C[0,1]$ and the (CRP). {Collect. Math.} 41 (1990), 21-25. | MR | Zbl
[18] Emmanuele, G.: Banach spaces with the (CRP) and dominated operators on $C(K)$. Ann. Acad. Sci. Fenn. Math. 16 (1991), 243-248. | DOI | MR | Zbl
[19] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153-188. | MR | Zbl
[20] Floret, K.: On ideals of $n$-homogeneous polynomials on Banach spaces. Topological algebras with applications to differential geometry and mathematical physics (Athens, 1999), 19-38, Univ. Athens, Athens (2002). | MR | Zbl
[21] Floret, K., Hunfeld, S.: Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces. Proc. Amer. Math. Soc. 130 (2002), 1425-1435. | DOI | MR | Zbl
[22] Gutiérrez, J. M.: Weakly continuous functions on Banach spaces not containing $\ell_1$. Proc. Amer. Math. Soc. 119 (1993), 147-152. | DOI | MR
[23] Gutiérrez, J. M., Villanueva, I.: Extensions of multilinear operators and Banach space properties. Proc. Roy. Soc. Edinburgh 133A (2003), 549-566. | MR
[24] Matos, M. C.: Absolutely summing holomorphic mappings. An. Acad. Bras. Ci. 68 (1996), 1-13. | MR | Zbl
[25] Meléndez, Y., Tonge, A.: Polynomials and the Pietsch domination theorem. Proc. Roy. Irish Acad. Sect. A 99 (1999), 195-212. | MR
[26] Mujica, J.: Complex Analysis in Banach Spaces. Math. Studies, vol. 120, North-Holland, Amsterdam (1986). | MR | Zbl
[27] Musial, K.: Martingales of Pettis integrable functions. D. Kölzow Measure Theory. Oberwolfach 1979, Lecture Notes in Math. 794, Springer, Berlin (1980), 324-339. | DOI | MR | Zbl
[28] Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Reg. Conf. Ser. Math. 60, American Mathematical Society, Providence RI (1987). | MR
[29] Rosenthal, H. P.: Some new characterizations of Banach spaces containing $\ell_1$, preprint.
[30] Ryan, R. A.: Applications of topological tensor products to infinite dimensional holomorphy. Ph. D. Thesis, Trinity College, Dublin (1980).
[31] Talagrand, M.: Pettis Integral and Measure Theory. Mem. Amer. Math. Soc. 307, American Mathematical Society, Providence RI (1984). | MR | Zbl
[32] Villanueva, I.: Integral mappings between Banach spaces. J. Math. Anal. Appl. 279 (2003), 56-70. | DOI | MR | Zbl