Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 211-219 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk.\ J.\ Math.\ 30 (2006), 403--411). We show that if $\mathcal U$ is a triangular algebra, then every generalized Jordan derivation of above type from $\mathcal U$ into itself is a generalized derivation.
In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk.\ J.\ Math.\ 30 (2006), 403--411). We show that if $\mathcal U$ is a triangular algebra, then every generalized Jordan derivation of above type from $\mathcal U$ into itself is a generalized derivation.
Classification : 47B47, 47L35
Keywords: generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle; triangular algebra
@article{CMJ_2010_60_1_a17,
     author = {Majieed, Asia and Zhou, Jiren},
     title = {Generalized {Jordan} derivations associated with {Hochschild} 2-cocycles of triangular algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {211--219},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595084},
     zbl = {1224.16096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a17/}
}
TY  - JOUR
AU  - Majieed, Asia
AU  - Zhou, Jiren
TI  - Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 211
EP  - 219
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a17/
LA  - en
ID  - CMJ_2010_60_1_a17
ER  - 
%0 Journal Article
%A Majieed, Asia
%A Zhou, Jiren
%T Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
%J Czechoslovak Mathematical Journal
%D 2010
%P 211-219
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a17/
%G en
%F CMJ_2010_60_1_a17
Majieed, Asia; Zhou, Jiren. Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 211-219. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a17/

[1] Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280 (2004), 797-824. | DOI | MR

[2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl. 397 (2005), 235-244. | MR

[3] Brešar, M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1103-1106. | DOI | MR

[4] Davidson, K.: Nest Algebras. Pitman Research Notes in Math. 191, Longman, London (1988). | MR | Zbl

[5] Hou, J. C., Qi, X. F.: Generalized Jordan derivation on nest algebras. Linear Algebra Appl. 430 (2009), 1479-1485. | MR | Zbl

[6] Herstein, I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1958), 1104-1110. | DOI | MR | Zbl

[7] Lu, F. Y.: The Jordan structure of CSL algebras. Stud. Math. 190 (2009), 283-299. | DOI | MR | Zbl

[8] Nakajima, A.: Note on generalized Jordan derivation associate with Hochschild 2-cocycles of rings. Turk. J. Math. 30 (2006), 403-411. | MR

[9] Zhang, J. H.: Jordan derivations of nest algebras. Acta Math. Sinica 41 (1998), 205-212. | MR

[10] Zhang, J. H., Yu, W.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419 (2006), 251-255. | DOI | MR | Zbl