On the blow up criterion for the 2-D compressible Navier-Stokes equations
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 195-209
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
Classification :
35B44, 35Q30, 35Q35, 76D03
Keywords: compressible Navier-Stokes equations; classical solutions; blow up criterion
Keywords: compressible Navier-Stokes equations; classical solutions; blow up criterion
@article{CMJ_2010_60_1_a16,
author = {Jiang, Lingyu and Wang, Yidong},
title = {On the blow up criterion for the {2-D} compressible {Navier-Stokes} equations},
journal = {Czechoslovak Mathematical Journal},
pages = {195--209},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595083},
zbl = {1224.35317},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/}
}
Jiang, Lingyu; Wang, Yidong. On the blow up criterion for the 2-D compressible Navier-Stokes equations. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 195-209. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/