On the blow up criterion for the 2-D compressible Navier-Stokes equations
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 195-209 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
Classification : 35B44, 35Q30, 35Q35, 76D03
Keywords: compressible Navier-Stokes equations; classical solutions; blow up criterion
@article{CMJ_2010_60_1_a16,
     author = {Jiang, Lingyu and Wang, Yidong},
     title = {On the blow up criterion for the {2-D} compressible {Navier-Stokes} equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {195--209},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595083},
     zbl = {1224.35317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/}
}
TY  - JOUR
AU  - Jiang, Lingyu
AU  - Wang, Yidong
TI  - On the blow up criterion for the 2-D compressible Navier-Stokes equations
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 195
EP  - 209
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/
LA  - en
ID  - CMJ_2010_60_1_a16
ER  - 
%0 Journal Article
%A Jiang, Lingyu
%A Wang, Yidong
%T On the blow up criterion for the 2-D compressible Navier-Stokes equations
%J Czechoslovak Mathematical Journal
%D 2010
%P 195-209
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/
%G en
%F CMJ_2010_60_1_a16
Jiang, Lingyu; Wang, Yidong. On the blow up criterion for the 2-D compressible Navier-Stokes equations. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 195-209. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a16/

[1] Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94 (1984), 61-66. | DOI | MR | Zbl

[2] Choe, H. J., Jin, B. J.: Regularity of weak solutions of the compressible Navier-Stokes equations. J. Korean Math. Soc. 40 (2003), 1031-1050. | DOI | MR | Zbl

[3] Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm. P. D. E. 22 (1997), 977-1008. | DOI | MR | Zbl

[4] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358-392. | DOI | MR

[5] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing movement of compressible viscous fluids. K$\bar o$dai Math. Sem. Rep. 23 (1971), 60-120. | DOI | MR

[6] Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm. Math. Phys. 214 (2000), 191-200. | DOI | MR | Zbl

[7] Lions, P. L.: Mathematical Topics in Fluid Mechanics, Vol 2. Compressible Models. Oxford lecture series in Mathematics and its Applications, 10, Oxford Sciences Publications. The Clarendon Press, Oxford University Press, New York (1998). | MR | Zbl

[8] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS. Kyoto Univ. 13 (1977), 193-253. | DOI | Zbl

[9] Xin, Z. P.: Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR

[10] Vaigant, V. A., Kazhikhov, A. V.: On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. Russian Sibirsk. Mat. Zh. 36 (1995), 1283-1316 translation in it Siberian Math. J. {\it 36} (1995). | MR