Schur multiplier characterization of a class of infinite matrices
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1
Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1$, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
Classification : 15A48, 15A60, 26D15, 47B35
Keywords: infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities
@article{CMJ_2010_60_1_a15,
     author = {Marcoci, A. and Marcoci, L. and Persson, L. E. and Popa, N.},
     title = {Schur multiplier characterization of a class of infinite matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--193},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595082},
     zbl = {1224.15066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/}
}
TY  - JOUR
AU  - Marcoci, A.
AU  - Marcoci, L.
AU  - Persson, L. E.
AU  - Popa, N.
TI  - Schur multiplier characterization of a class of infinite matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 183
EP  - 193
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/
LA  - en
ID  - CMJ_2010_60_1_a15
ER  - 
%0 Journal Article
%A Marcoci, A.
%A Marcoci, L.
%A Persson, L. E.
%A Popa, N.
%T Schur multiplier characterization of a class of infinite matrices
%J Czechoslovak Mathematical Journal
%D 2010
%P 183-193
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/
%G en
%F CMJ_2010_60_1_a15
Marcoci, A.; Marcoci, L.; Persson, L. E.; Popa, N. Schur multiplier characterization of a class of infinite matrices. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/

[1] Bennett, G.: Factorizing the Classical Inequalities. Memoirs of the American Mathematical Society, Number 576 (1996). | MR | Zbl

[2] Bennett, G.: Schur multipliers. Duke Math. J. 44 (1977), 603-639. | MR | Zbl

[3] Barza, S., Kravvaritis, D., Popa, N.: Matriceal Lebesgue spaces and Hölder inequality. J. Funct. Spaces Appl. 3 (2005), 239-249. | DOI | MR | Zbl

[4] Badea, C., Paulsen, V.: Schur multipliers and operator-valued Foguel-Hankel operators. Indiana Univ. Math. J. 50 (2001), 1509-1522. | DOI | MR | Zbl

[5] Barza, S., Persson, L. E., Popa, N.: A Matriceal Analogue of Fejer's theory. Math. Nach. 260 (2003), 14-20. | DOI | MR | Zbl

[6] Barza, S., Lie, V. D., Popa, N.: Approximation of infinite matrices by matriceal Haar polynomials. Ark. Mat. 43 (2005), 251-269. | DOI | MR

[7] Carro, M. J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112 (1993), 480-494. | DOI | MR | Zbl

[8] Carro, M. J., Raposo, J. A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Memoirs of the American Mathematical Society, Number 877 (2007). | MR | Zbl

[9] Jagers, A. A.: A note on Cesaro sequence spaces. Nieuw Arch. voor Wiskunde 3 (1974), 113-124. | MR | Zbl

[10] Kufner, A., Persson, L. E.: Weighted Inequalities of Hardy Type. World Scientific Publishing Co., Singapore-New Jersey-London-Hong Kong (2003). | MR | Zbl

[11] Kufner, A., Maligranda, L., Persson, L. E.: The Hardy Inequality. About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen (2007). | MR

[12] Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Studia Math. 34 (1970), 43-68. | DOI | MR | Zbl

[13] Marcoci, A., Marcoci, L.: A new class of linear operators on $\ell^2$ and Schur multipliers for them. J. Funct. Spaces Appl. 5 (2007), 151-164. | DOI | MR

[14] Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge studies in advanced mathematics 78, Cambridge University Press (2002). | MR | Zbl

[15] Pommerenke, Chr.: Univalent Functions. Hubert, Gottingen (1975). | MR | Zbl

[16] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145-158. | DOI | MR | Zbl

[17] Schur, J.: Bemerkungen zur Theorie der beschr$\ddot a$nkten Bilinearformen mit unendlich vielen Verandlichen. J. Reine Angew. Math. 140 (1911), 1-28 \JFM 42.0367.01. | DOI

[18] Shapiro, H. S., Shields, A. L.: On some interpolation problems for analytic functions. Amer. J. Math. 83 (1961), 513-532. | DOI | MR | Zbl

[19] Shapiro, H. S., Shields, A. L.: On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Zeit. 80 (1962), 217-229. | DOI | MR | Zbl

[20] Styan, G. P. H.: Hadamard products and multivariate statistical analysis. Linear Algebra 6 (1973), 217-240. | DOI | MR

[21] Shields, A. L., Wallen, J. L.: The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1971), 777-799. | DOI | MR | Zbl