Schur multiplier characterization of a class of infinite matrices
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1$, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1$, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
Classification :
15A48, 15A60, 26D15, 47B35
Keywords: infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities
Keywords: infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities
@article{CMJ_2010_60_1_a15,
author = {Marcoci, A. and Marcoci, L. and Persson, L. E. and Popa, N.},
title = {Schur multiplier characterization of a class of infinite matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {183--193},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595082},
zbl = {1224.15066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/}
}
TY - JOUR AU - Marcoci, A. AU - Marcoci, L. AU - Persson, L. E. AU - Popa, N. TI - Schur multiplier characterization of a class of infinite matrices JO - Czechoslovak Mathematical Journal PY - 2010 SP - 183 EP - 193 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/ LA - en ID - CMJ_2010_60_1_a15 ER -
Marcoci, A.; Marcoci, L.; Persson, L. E.; Popa, N. Schur multiplier characterization of a class of infinite matrices. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a15/