Keywords: positive solution; singular boundary value problem; multi-point boundary condition; nonlinear alternative of Leray-Schauder
@article{CMJ_2010_60_1_a14,
author = {Graef, John R. and Kong, Lingju and Yang, Bo},
title = {Positive solutions for third order multi-point singular boundary value problems},
journal = {Czechoslovak Mathematical Journal},
pages = {173--182},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595081},
zbl = {1224.34060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a14/}
}
TY - JOUR AU - Graef, John R. AU - Kong, Lingju AU - Yang, Bo TI - Positive solutions for third order multi-point singular boundary value problems JO - Czechoslovak Mathematical Journal PY - 2010 SP - 173 EP - 182 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a14/ LA - en ID - CMJ_2010_60_1_a14 ER -
Graef, John R.; Kong, Lingju; Yang, Bo. Positive solutions for third order multi-point singular boundary value problems. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a14/
[1] Agarwal, R. P., O'Regan, D.: Singular Differential and Integral Equations with Applications. Kluwer Academic Publishers, Boston (2003). | MR | Zbl
[2] Agarwal, R. P., O'Regan, D.: Positive solutions for $(p, n-p)$ conjugate boundary value problems. J. Differential Equations 150 (1998), 462-473. | DOI | MR | Zbl
[3] Agarwal, R. P., O'Regan, D.: Singular boundary value problems for superlinear second order ordinary and delay differential equations. J. Differential Equations 130 (1996), 333-355. | DOI | MR | Zbl
[4] Chu, J., Torres, P. J., Zhang, M.: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differential Equations 239 (2007), 196-211. | DOI | MR | Zbl
[5] Gatica, J. A., Oliver, V., Waltman, P.: Singular nonlinear boundary value problems for second order differential equations. J. Differential Equations 79 (1989), 62-78. | DOI | MR
[6] Graef, J. R., Henderson, J., Yang, B.: Positive solutions to a singular third order nonlocal boundary value problem. Indian J. Math. 50 (2008), 317-330. | MR | Zbl
[7] Graef, J. R., Henderson, J., Yang, B.: Existence of positive solutions of a higher order nonlocal singular boundary value problem. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 16, Supplement S1 (2009), 147-152. | MR | Zbl
[8] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. | MR | Zbl
[9] Eloe, P. W., Henderson, J.: Singular nonlinear $(k, n-k)$ conjugate boundary value problems. J. Differential Equations 133 (1997), 136-151. | DOI | MR | Zbl
[10] Eloe, P. W., Henderson, J.: Singular nonlinear boundary value problems for higher order ordinary differential equations. Nonlinear Anal. 17 (1991), 1-10. | DOI | MR | Zbl
[11] Maroun, M.: Positive solutions to an $N^{th}$ order right focal boundary value problem. Electron. J. Qual. Theory Diff. Equ. 2007 17 (electronic). | MR
[12] Maroun, M.: Positive solutions to an third-order right focal boundary value problem. Comm. Appl. Nonlinear Anal. 12 (2005), 71-82. | MR
[13] Kong, L., Kong, Q.: Positive solutions of higher-order boundary value problems. Proc. Edinburgh Math. Soc. 48 (2005), 445-464. | MR | Zbl
[14] Rachůnková, I., Staněk, S.: Sturm-Liouville and focal higher order BVPs with singularities in phase variables. Georgian Math. J. 10 (2003), 165-191. | DOI | MR
[15] O'Regan, D.: Existence of solutions to third order boundary value problems. Proc. Royal Irish Acad. Sect. A 90 (1990), 173-189. | MR | Zbl