On deformations of spherical isometric foldings
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 149-159 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The behavior of special classes of isometric foldings of the Riemannian sphere $S^2$ under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the {\it standard} spherical isometric folding $f_s$ defined by $f_s(x,y,z)=(x,y,|z|)$.
The behavior of special classes of isometric foldings of the Riemannian sphere $S^2$ under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the {\it standard} spherical isometric folding $f_s$ defined by $f_s(x,y,z)=(x,y,|z|)$.
Classification : 52B05, 52C20, 55P10, 57Q55
Keywords: isometric foldings; edge-to-edge spherical tilings; homotopy
@article{CMJ_2010_60_1_a12,
     author = {Breda, Ana M. and Santos, Altino F.},
     title = {On deformations of spherical isometric foldings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {149--159},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595079},
     zbl = {1224.52028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a12/}
}
TY  - JOUR
AU  - Breda, Ana M.
AU  - Santos, Altino F.
TI  - On deformations of spherical isometric foldings
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 149
EP  - 159
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a12/
LA  - en
ID  - CMJ_2010_60_1_a12
ER  - 
%0 Journal Article
%A Breda, Ana M.
%A Santos, Altino F.
%T On deformations of spherical isometric foldings
%J Czechoslovak Mathematical Journal
%D 2010
%P 149-159
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a12/
%G en
%F CMJ_2010_60_1_a12
Breda, Ana M.; Santos, Altino F. On deformations of spherical isometric foldings. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a12/

[1] Breda, A. M. d'Azevedo: {Isometric Foldings}. PhD Thesis, University of Southampton, U.K. (1989).

[2] Breda, A. M. d'Azevedo: {A class of tilings of $S^2$}. Geometriae Dedicata 44 (1992), 241-253. | MR

[3] Breda, A. M. d'Azevedo, Santos, A. F.: Dihedral $f$-tilings of the sphere by spherical triangles and equiangular well centered quadrangles. Beiträge Algebra Geometrie 45 (2004), 447-461. | MR

[4] Breda, A. M. d'Azevedo, Santos, A. F.: Dihedral $f$-tilings of the sphere by rhombi and triangles. Discrete Math. Theoretical Computer Sci. 7 (2005), 123-140. | MR

[5] Breda, A. M. d'Azevedo, Santos, A. F.: {Dihedral $f$-tilings of the sphere by triangles and well centered quadrangles}. Hiroshima Math. J. 36 (2006), 235-288. | DOI | MR

[6] Hirsch, M.: {Differential Topology}. Graduate Texts in Math, 33 Springer-Verlag, New York (1976). | MR | Zbl

[7] Robertson, S. A.: {Isometric folding of riemannian manifolds}. Proc. Royal Soc. Edinb. Sect. A 79 (1977), 275-284. | MR | Zbl