Homogeneous polynomials with isomorphic Milnor algebras
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 125-131
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We recall first Mather's Lemma providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. We show that two homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.
We recall first Mather's Lemma providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. We show that two homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.
Classification :
14E05, 14J17, 14L30, 16W22, 32S30
Keywords: Milnor algebra; right-equivalence; homogeneous polynomial
Keywords: Milnor algebra; right-equivalence; homogeneous polynomial
@article{CMJ_2010_60_1_a10,
author = {Ahmed, Imran},
title = {Homogeneous polynomials with isomorphic {Milnor} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {125--131},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595077},
zbl = {1224.14001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a10/}
}
Ahmed, Imran. Homogeneous polynomials with isomorphic Milnor algebras. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 125-131. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a10/
[1] Dimca, A.: Topics on Real and Complex Singularities. Fried. Vieweg & Sohn Braunschweig/Wiesbaden (1987). | MR | Zbl
[2] Gibson, C. G., Wirthmüller, K., Plessis, A. A. Du, Looijenga, E. J. N.: Topological Stability of Smooth Mappings. Lect. Notes Math. Vol. 552. Springer Berlin (1976). | MR
[3] Mather, J. N.: Stability of $C^{\infty}$-mappings. IV: Classification of stable germs by $\Bbb R$-algebras. Publ. Math., Inst. Hautes Étud. Sci. 37 (1969), 223-248. | DOI | MR | Zbl
[4] Mather, J. N., Yau, S. S. T.: Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math. 69 (1982), 243-251. | DOI | MR | Zbl