Lambert multipliers between $L^p$ spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 31-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper Lambert multipliers acting between $L^p$ spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.
In this paper Lambert multipliers acting between $L^p$ spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.
Classification : 46E30, 47A53, 47B20, 47B38
Keywords: conditional expectation; multipliers; multiplication operators; Fredholm operator
@article{CMJ_2010_60_1_a1,
     author = {Jabbarzadeh, M. R. and Sarbaz, S. Khalil},
     title = {Lambert multipliers between $L^p$ spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {31--43},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595068},
     zbl = {1220.47043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a1/}
}
TY  - JOUR
AU  - Jabbarzadeh, M. R.
AU  - Sarbaz, S. Khalil
TI  - Lambert multipliers between $L^p$ spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 31
EP  - 43
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a1/
LA  - en
ID  - CMJ_2010_60_1_a1
ER  - 
%0 Journal Article
%A Jabbarzadeh, M. R.
%A Sarbaz, S. Khalil
%T Lambert multipliers between $L^p$ spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 31-43
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a1/
%G en
%F CMJ_2010_60_1_a1
Jabbarzadeh, M. R.; Sarbaz, S. Khalil. Lambert multipliers between $L^p$ spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a1/

[1] Campbell, J., Jamison, J.: On some classes of weighted composition operators. Glasg. Math. J. 32 (1990), 87-94. | DOI | MR | Zbl

[2] Conway, J. B.: A course in Functional Analysis, 2nd ed. Springer-Verlag New York (1990). | MR | Zbl

[3] Pagter, B. de, Ricker, W. J.: Bicommutants of algebras of multiplication operators. Proc. London Math. Soc. 72 (1996), 458-480. | MR | Zbl

[4] Herron, J.: Weighted conditional expectation operators on $L^p$ spaces. UNC Charlotte Doctoral Dissertation ().

[5] Kantorovitz, S.: Introduction to Modern Analysis. Oxford University Press Oxford (2003). | MR | Zbl

[6] Lambert, A., Lucas, T. G.: Nagata's principle of idealization in relation to module homomorphisms and conditional expectations. Kyungpook Math. J. 40 (2000), 327-337. | MR | Zbl

[7] Lambert, A.: $L^p$ multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. 104 (1998), 147-153. | MR

[8] Lambert, A., Weinstock, B. M.: A class of operator algebras induced by probabilistic conditional expectations. Mich. Math. J. 40 (1993), 359-376. | DOI | MR | Zbl

[9] Lambert, A.: Hyponormal composition operators. Bull. London Math. Soc. 18 (1986), 395-400. | DOI | MR | Zbl

[10] Rao, M. M.: Conditional Measures and Applications. Marcel Dekker New York (1993). | MR | Zbl

[11] Takagi, H.: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 (1993), 267-276. | DOI | MR | Zbl

[12] Takagi, H., Yokouchi, K.: Multiplication and composition operators between two $L^p$-spaces. Contemp. Math. 232 (1999), 321-338. | DOI | MR

[13] Zaanen, A. C.: Integration, 2nd ed. North-Holland Amsterdam (1967). | MR