Extension and reconstruction theorems for the Urysohn universal metric space
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 1-29 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. As an application, we prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.
We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. As an application, we prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.
Classification : 20E36, 22F50, 51F99, 54E40, 54H11
Keywords: Urysohn space; bilipschitz homeomorphism; modulus of continuity; reconstruction theorem; extension theorem
@article{CMJ_2010_60_1_a0,
     author = {Kubi\'s, Wies{\l}aw and Rubin, Matatyahu},
     title = {Extension and reconstruction theorems for the {Urysohn} universal metric space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--29},
     year = {2010},
     volume = {60},
     number = {1},
     mrnumber = {2595067},
     zbl = {1224.22010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/}
}
TY  - JOUR
AU  - Kubiś, Wiesław
AU  - Rubin, Matatyahu
TI  - Extension and reconstruction theorems for the Urysohn universal metric space
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1
EP  - 29
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/
LA  - en
ID  - CMJ_2010_60_1_a0
ER  - 
%0 Journal Article
%A Kubiś, Wiesław
%A Rubin, Matatyahu
%T Extension and reconstruction theorems for the Urysohn universal metric space
%J Czechoslovak Mathematical Journal
%D 2010
%P 1-29
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/
%G en
%F CMJ_2010_60_1_a0
Kubiś, Wiesław; Rubin, Matatyahu. Extension and reconstruction theorems for the Urysohn universal metric space. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/

[1] Fonf, V. P., Rubin, M.: Reconstruction theorem for homeomorphism groups without small sets and non-shrinking functions of a normed space. Preprint in Math Arxiv. Available at | arXiv

[2] Huhunaišvili, G. E.: On a property of Uryson's universal metric space. Dokl. Akad. Nauk SSSR (N.S.) 101 (1955), 607-610 Russian. | MR

[3] Kojman, M., Shelah, S.: Almost isometric embeddings between metric spaces. Israel J. Math. 155 (2006), 309-334. | DOI | MR

[4] Yomdin, M. Rubin,Y.: Reconstruction of manifolds and subsets of normed spaces from subgroups of their homeomorphism groups. Dissertationes Math. 435 (2005), 1-246. | DOI | MR | Zbl

[5] Uspenskij, V.: The Urysohn universal metric space is homeomorphic to a Hilbert space. Topology Appl. 139 (2004), 145-149. | DOI | MR | Zbl

[6] Urysohn, P. S.: Sur un espace métrique universel I, II. Bull. Sci. Math. 51 (1927), 43-64, 74-90.