Keywords: Urysohn space; bilipschitz homeomorphism; modulus of continuity; reconstruction theorem; extension theorem
@article{CMJ_2010_60_1_a0,
author = {Kubi\'s, Wies{\l}aw and Rubin, Matatyahu},
title = {Extension and reconstruction theorems for the {Urysohn} universal metric space},
journal = {Czechoslovak Mathematical Journal},
pages = {1--29},
year = {2010},
volume = {60},
number = {1},
mrnumber = {2595067},
zbl = {1224.22010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/}
}
TY - JOUR AU - Kubiś, Wiesław AU - Rubin, Matatyahu TI - Extension and reconstruction theorems for the Urysohn universal metric space JO - Czechoslovak Mathematical Journal PY - 2010 SP - 1 EP - 29 VL - 60 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/ LA - en ID - CMJ_2010_60_1_a0 ER -
Kubiś, Wiesław; Rubin, Matatyahu. Extension and reconstruction theorems for the Urysohn universal metric space. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/CMJ_2010_60_1_a0/
[1] Fonf, V. P., Rubin, M.: Reconstruction theorem for homeomorphism groups without small sets and non-shrinking functions of a normed space. Preprint in Math Arxiv. Available at | arXiv
[2] Huhunaišvili, G. E.: On a property of Uryson's universal metric space. Dokl. Akad. Nauk SSSR (N.S.) 101 (1955), 607-610 Russian. | MR
[3] Kojman, M., Shelah, S.: Almost isometric embeddings between metric spaces. Israel J. Math. 155 (2006), 309-334. | DOI | MR
[4] Yomdin, M. Rubin,Y.: Reconstruction of manifolds and subsets of normed spaces from subgroups of their homeomorphism groups. Dissertationes Math. 435 (2005), 1-246. | DOI | MR | Zbl
[5] Uspenskij, V.: The Urysohn universal metric space is homeomorphic to a Hilbert space. Topology Appl. 139 (2004), 145-149. | DOI | MR | Zbl
[6] Urysohn, P. S.: Sur un espace métrique universel I, II. Bull. Sci. Math. 51 (1927), 43-64, 74-90.