The semiring of 1-preserving endomorphisms of a semilattice
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 999-1003 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the semirings of 1-preserving and of 0,1-preserving endomorphisms of a semilattice are always subdirectly irreducible and we investigate under which conditions they are simple. Subsemirings are also investigated in a similar way.
We prove that the semirings of 1-preserving and of 0,1-preserving endomorphisms of a semilattice are always subdirectly irreducible and we investigate under which conditions they are simple. Subsemirings are also investigated in a similar way.
Classification : 06A12, 16Y60
Keywords: semilattice; semiring; subdirectly irreducible; simple
@article{CMJ_2009_59_4_a9,
     author = {Je\v{z}ek, Jaroslav and Kepka, Tom\'a\v{s}},
     title = {The semiring of 1-preserving endomorphisms of a semilattice},
     journal = {Czechoslovak Mathematical Journal},
     pages = {999--1003},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563572},
     zbl = {1224.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a9/}
}
TY  - JOUR
AU  - Ježek, Jaroslav
AU  - Kepka, Tomáš
TI  - The semiring of 1-preserving endomorphisms of a semilattice
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 999
EP  - 1003
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a9/
LA  - en
ID  - CMJ_2009_59_4_a9
ER  - 
%0 Journal Article
%A Ježek, Jaroslav
%A Kepka, Tomáš
%T The semiring of 1-preserving endomorphisms of a semilattice
%J Czechoslovak Mathematical Journal
%D 2009
%P 999-1003
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a9/
%G en
%F CMJ_2009_59_4_a9
Ježek, Jaroslav; Kepka, Tomáš. The semiring of 1-preserving endomorphisms of a semilattice. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 999-1003. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a9/

[1] Bashir, R. El, Hurt, J., Jančařík, A., Kepka, T.: Simple commutative semirings. J. Algebra 236 (2001), 277-306. | DOI | MR

[2] Bashir, R. El, Kepka, T.: Congruence-simple semirings. Semigroup Forum 75 (2007), 588-608. | DOI | MR | Zbl

[3] Ježek, J., Kepka, T., Maróti, M.: The endomorphism semiring of a semilattice. Semigroup Forum 78 (2009), 253-261. | DOI | MR

[4] Maze, G., Monico, C., Rosenthal, J.: Public Key Cryptography based on semigroup actions. Adv. Math. Commun. 1 (2007), 489-502. | DOI | MR

[5] McKenzie, R., McNulty, G., Taylor,, W.: Algebras, Lattices, Varieties, Volume I. Wadsworth & Brooks/Cole, Monterey, CA (1987). | MR

[6] Mitchell, S. S., Fenoglio, P. B.: Congruence-free commutative semirings. Semigroup Forum 37 (1988), 79-91. | DOI | MR | Zbl

[7] Monico, C.: On finite congruence-simple semirings. J. Algebra 271 (2004), 846-854. | DOI | MR | Zbl

[8] Vandiver, H. S.: Note on a simple type of algebras in which the cancellation law of addition does not hold. Bull. Amer. Math. Soc. 40 (1934), 916-920. | DOI | MR

[9] Zumbrägel, J.: Classification of finite congruence-simple semirings with zero. Preprint. | MR