Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 957-973 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the four-point singular boundary value problem $$ \begin {cases} (\phi _p(u'(t)))'+q(t)f(t,u(t),u'(t))=0, t\in (0,1),\\ u'(0)-\alpha u(\xi )=0, \quad u'(1)+\beta u(\eta )=0, \end {cases} $$ where $\phi _p(s)=|s|^{p-2}s$, $p>1$, $0\xi \eta 1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb R,(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.
In this paper we deal with the four-point singular boundary value problem $$ \begin {cases} (\phi _p(u'(t)))'+q(t)f(t,u(t),u'(t))=0, t\in (0,1),\\ u'(0)-\alpha u(\xi )=0, \quad u'(1)+\beta u(\eta )=0, \end {cases} $$ where $\phi _p(s)=|s|^{p-2}s$, $p>1$, $0\xi \eta 1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb R,(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.
Classification : 34B10, 34B16, 34B18
Keywords: singular; four-point; positive solution; $p$-Laplacian
@article{CMJ_2009_59_4_a6,
     author = {Miao, Chunmei and Zhao, Junfang and Ge, Weigao},
     title = {Existence of positive solutions for singular four-point boundary value problem with a $p${-Laplacian}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {957--973},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563569},
     zbl = {1224.34053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a6/}
}
TY  - JOUR
AU  - Miao, Chunmei
AU  - Zhao, Junfang
AU  - Ge, Weigao
TI  - Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 957
EP  - 973
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a6/
LA  - en
ID  - CMJ_2009_59_4_a6
ER  - 
%0 Journal Article
%A Miao, Chunmei
%A Zhao, Junfang
%A Ge, Weigao
%T Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian
%J Czechoslovak Mathematical Journal
%D 2009
%P 957-973
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a6/
%G en
%F CMJ_2009_59_4_a6
Miao, Chunmei; Zhao, Junfang; Ge, Weigao. Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 957-973. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a6/

[1] Agarwal, R. P., O'Regan, D.: Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differ. Equations 143 (1998), 60-95. | DOI | MR | Zbl

[2] Agarwal, R. P., O'Regan, D.: Existence theory for single and multiple solutions to singular positone boundary value problems. J. Differ. Equations 175 (2001), 393-414. | DOI | MR | Zbl

[3] Agarwal, R. P., O'Regan, D.: Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240 (1999), 433-445. | DOI | MR | Zbl

[4] Jiang, D., Chu, J., Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equations 211 (2005), 282-302. | DOI | MR | Zbl

[5] Ha, K., Lee, Y.: Existence of multiple positive solutions of singular boundary value problems. Nonlinear Anal. 28 (1997), 1429-1438. | DOI | MR | Zbl

[6] Khan, R. A.: Positive solutions of four-point singular boundary value problems. Appl. Math. Comput. 201 (2008), 762-773. | DOI | MR | Zbl

[7] Lan, K., Webb, J. L.: Positive solutions of semilinear differential equations with singularities. J. Differ. Equations 148 (1998), 407-421. | DOI | MR | Zbl

[8] Liu, Y., Qi, A.: Positive solutions of nonlinear singular boundary value problem in abstract space. Comput. Math. Appl. 47 (2004), 683-688. | DOI | MR | Zbl

[9] Liu, B., Liu, L., Wu, Y.: Positive solutions for singular second order three-point boundary value problems. Nonlinear Anal. 66 (2007), 2756-2766. | DOI | MR | Zbl

[10] Ma, D., Han, J., Chen, X.: Positive solution of three-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. J. Math. Anal. Appl. 324 (2006), 118-133. | DOI | MR | Zbl

[11] Ma, D., Ge, W.: Positive solution of multi-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. Rocky Mountain J. Math. 137 (2007), 1229-1249. | DOI | MR | Zbl

[12] Ma, D., Ge, W.: The existence of positive solution of multi-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. Acta Mech. Sinica (Beijing) 48 (2005), 1079-1088. | MR | Zbl

[13] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations. In: Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3 A. Cañada, P. Drábek, A. Fonda Elsevier (2006), 607-723. | MR

[14] Wei, Z., Pang, C.: Positive solutions of some singular $m$-point boundary value problems at non-resonance. Appl. Math. Comput. 171 (2005), 433-449. | DOI | MR | Zbl

[15] Xu, X.: Positive solutions for singular $m$-point boundary value problems with positive parameter. J. Math. Anal. Appl. 291 (2004), 352-367. | DOI | MR | Zbl

[16] Zhang, X., Liu, L.: Eigenvalue of fourth-order $m$-point boundary value problem with derivatives. Comput. Math. Appl. 56 (2008), 172-185. | DOI | MR | Zbl

[17] Zhang, X., Liu, L.: Positive solutions of fourth-order four-point boundary value problems with $p$-Laplacian operator. J. Math. Anal. Appl. 336 (2007), 1414-1423. | DOI | MR | Zbl