Keywords: monotone Lindelöf property; generalized ordered topological product; generalized ordered spaces
@article{CMJ_2009_59_4_a5,
author = {Xu, Ai-Jun and Shi, Wei-Xue},
title = {Notes on monotone {Lindel\"of} property},
journal = {Czechoslovak Mathematical Journal},
pages = {943--955},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563568},
zbl = {1224.54073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a5/}
}
Xu, Ai-Jun; Shi, Wei-Xue. Notes on monotone Lindelöf property. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 943-955. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a5/
[1] Burke, D. K.: Covering Properties. Handbook of Set-Theoretic Topology. K. Kunnen, J. E. Vanghan North-Holland Amesterdam (1984). | MR
[2] Bennett, H., Lutzer, D., Matveev, M.: The monotone Lindelöf property and separability in ordered spaces. Topology Appl. 151 (2005), 180-186. | DOI | MR | Zbl
[3] Engelking, R.: General Topology. Sigma Series in Pure Mathematics. Hedermann Berlin (1989). | MR
[4] Faber, M. J.: Metrizability in Generalized Ordered Spaces. Math. Centre Tracts No. 53. Amsterdam (). | MR
[5] Kemoto, N.: Normality of products of GO-spaces and cardinals. Topology Proc. 18 (1993), 133-142. | MR | Zbl
[6] Lutzer, D.: Ordered topological spaces. In: Surveys in General Topology G. M. Reed Academic Press New York (1980), 247-296. | MR | Zbl
[7] Xu, A.-J., Shi, W.-X.: On lexicographic products of two GO-spaces with a generalized ordered topology. Topology Proc. 31 (2007), 361-376. | MR | Zbl
[8] Xu, A.-J., Shi, W.-X.: Monotone Lindelöf property, linearly ordered extensions and lexicographic product. Submitted.