Holomorphy types and spaces of entire functions of bounded type on Banach spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 909-927 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper spaces of entire functions of $\Theta $-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we ``construct an algorithm'' to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI, 1955/56, 271--355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, Séminaire d'Analyse Moderne, 2, Université de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações $\tau (p;q)$-somantes e $\sigma (p)$-nucleares, Thesis, Universidade Estadual de Campinas, 2006.
In this paper spaces of entire functions of $\Theta $-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we ``construct an algorithm'' to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI, 1955/56, 271--355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, Séminaire d'Analyse Moderne, 2, Université de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações $\tau (p;q)$-somantes e $\sigma (p)$-nucleares, Thesis, Universidade Estadual de Campinas, 2006.
Classification : 46E50, 46G20, 46G25, 47B38
Keywords: Banach spaces; holomorphy types; homogeneous polynomials; holomorphic functions; convolution operators; Borel transform; approximation and existence theorems
@article{CMJ_2009_59_4_a3,
     author = {F\'avaro, Vin{\'\i}cius V. and Jatob\'a, Ariosvaldo M.},
     title = {Holomorphy types and spaces of entire functions of bounded type on {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {909--927},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563566},
     zbl = {1224.46087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/}
}
TY  - JOUR
AU  - Fávaro, Vinícius V.
AU  - Jatobá, Ariosvaldo M.
TI  - Holomorphy types and spaces of entire functions of bounded type on Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 909
EP  - 927
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/
LA  - en
ID  - CMJ_2009_59_4_a3
ER  - 
%0 Journal Article
%A Fávaro, Vinícius V.
%A Jatobá, Ariosvaldo M.
%T Holomorphy types and spaces of entire functions of bounded type on Banach spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 909-927
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/
%G en
%F CMJ_2009_59_4_a3
Fávaro, Vinícius V.; Jatobá, Ariosvaldo M. Holomorphy types and spaces of entire functions of bounded type on Banach spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 909-927. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/

[1] Banach, S.: Théorie des opérations linéaires. Hafner New York (1932). | Zbl

[2] Dineen, S.: Holomorphy types on a Banach space. Stud. Math. 39 (1971), 241-288. | DOI | MR | Zbl

[3] Fávaro, V. V.: The Fourier-Borel transform between spaces of entire functions of a given type and order. Port. Math. 65 (2008), 285-309. | DOI | MR

[4] Fávaro, V. V.: Convolution equations on spaces of quasi-nuclear functions of a given type and order. Preprint.

[5] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153-188. | MR | Zbl

[6] Gupta, C.: Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2. Université de Sherbrooke Sherbrooke (1969).

[7] Horváth, J.: Topological Vector Spaces and Distribuitions. Addison-Wesley Reading (1966). | MR

[8] Malgrange, B.: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355. | MR

[9] Martineau, A.: Équations différentielles d'ordre infini. Bull. Soc. Math. Fr. 95 (1967), 109-154 French. | DOI | MR | Zbl

[10] Matos, M. C.: On the Fourier-Borel transformation and spaces of entire functions in a normed space. In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170. | DOI | MR | Zbl

[11] Matos, M. C.: On convolution operators in spaces of entire functions of a given type and order. In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171. | DOI | MR | Zbl

[12] Matos, M. C.: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations. IMECC-UNICAMP (2007),\hfil http://www.ime.unicamp.br/rel\_pesq/2007/rp03-07.html

[13] Mujica, X.: Aplicações $\tau(p;q)$-somantes e $\sigma(p)$-nucleares. Thesis Universidade Estadual de Campinas (2006).

[14] Nachbin, L.: Topology on Spaces of Holomorphic Mappings. Springer New York (1969). | MR | Zbl

[15] Pietsch, A.: Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. | MR | Zbl

[16] Pietsch, A.: Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. | MR | Zbl