Keywords: Banach spaces; holomorphy types; homogeneous polynomials; holomorphic functions; convolution operators; Borel transform; approximation and existence theorems
@article{CMJ_2009_59_4_a3,
author = {F\'avaro, Vin{\'\i}cius V. and Jatob\'a, Ariosvaldo M.},
title = {Holomorphy types and spaces of entire functions of bounded type on {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {909--927},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563566},
zbl = {1224.46087},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/}
}
TY - JOUR AU - Fávaro, Vinícius V. AU - Jatobá, Ariosvaldo M. TI - Holomorphy types and spaces of entire functions of bounded type on Banach spaces JO - Czechoslovak Mathematical Journal PY - 2009 SP - 909 EP - 927 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/ LA - en ID - CMJ_2009_59_4_a3 ER -
Fávaro, Vinícius V.; Jatobá, Ariosvaldo M. Holomorphy types and spaces of entire functions of bounded type on Banach spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 909-927. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a3/
[1] Banach, S.: Théorie des opérations linéaires. Hafner New York (1932). | Zbl
[2] Dineen, S.: Holomorphy types on a Banach space. Stud. Math. 39 (1971), 241-288. | DOI | MR | Zbl
[3] Fávaro, V. V.: The Fourier-Borel transform between spaces of entire functions of a given type and order. Port. Math. 65 (2008), 285-309. | DOI | MR
[4] Fávaro, V. V.: Convolution equations on spaces of quasi-nuclear functions of a given type and order. Preprint.
[5] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153-188. | MR | Zbl
[6] Gupta, C.: Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2. Université de Sherbrooke Sherbrooke (1969).
[7] Horváth, J.: Topological Vector Spaces and Distribuitions. Addison-Wesley Reading (1966). | MR
[8] Malgrange, B.: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355. | MR
[9] Martineau, A.: Équations différentielles d'ordre infini. Bull. Soc. Math. Fr. 95 (1967), 109-154 French. | DOI | MR | Zbl
[10] Matos, M. C.: On the Fourier-Borel transformation and spaces of entire functions in a normed space. In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170. | DOI | MR | Zbl
[11] Matos, M. C.: On convolution operators in spaces of entire functions of a given type and order. In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171. | DOI | MR | Zbl
[12] Matos, M. C.: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations. IMECC-UNICAMP (2007),\hfil http://www.ime.unicamp.br/rel\_pesq/2007/rp03-07.html
[13] Mujica, X.: Aplicações $\tau(p;q)$-somantes e $\sigma(p)$-nucleares. Thesis Universidade Estadual de Campinas (2006).
[14] Nachbin, L.: Topology on Spaces of Holomorphic Mappings. Springer New York (1969). | MR | Zbl
[15] Pietsch, A.: Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. | MR | Zbl
[16] Pietsch, A.: Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. | MR | Zbl