Two valued measure and summability of double sequences
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1141-1155 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, following the methods of Connor \cite {connor}, we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely \cite {moe}) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor \cite {jc}. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$).
In this paper, following the methods of Connor \cite {connor}, we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely \cite {moe}) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor \cite {jc}. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$).
Classification : 40A05, 40A30, 40B05
Keywords: double sequences; $\mu $-statistical convergence; divergence and Cauchy criteria; convergence; divergence and Cauchy criteria in $\mu $-density; condition (APO$_2)$
@article{CMJ_2009_59_4_a21,
     author = {Das, Pratulananda and Bhunia, Santanu},
     title = {Two valued measure and summability of double sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1141--1155},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563584},
     zbl = {1224.40009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a21/}
}
TY  - JOUR
AU  - Das, Pratulananda
AU  - Bhunia, Santanu
TI  - Two valued measure and summability of double sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1141
EP  - 1155
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a21/
LA  - en
ID  - CMJ_2009_59_4_a21
ER  - 
%0 Journal Article
%A Das, Pratulananda
%A Bhunia, Santanu
%T Two valued measure and summability of double sequences
%J Czechoslovak Mathematical Journal
%D 2009
%P 1141-1155
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a21/
%G en
%F CMJ_2009_59_4_a21
Das, Pratulananda; Bhunia, Santanu. Two valued measure and summability of double sequences. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1141-1155. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a21/

[1] Balcerzak, M., Dems, K.: Some types of convergence and related Baire systems. Real Anal. Exchange 30 (2004), 267-276. | DOI | MR

[2] Connor, J.: Two valued measure and summability. Analysis 10 (1990), 373-385. | DOI | MR

[3] Connor, J.: $R$-type summability methods, Cauchy criterion, $P$-sets and statistical convergence. Proc. Amer. Math. Soc. 115 (1992), 319-327. | MR

[4] Connor, J., Fridy, J. A., Orhan, C.: Core equality results for sequences. J. Math. Anal. Appl. 321 (2006), 515-523. | DOI | MR | Zbl

[5] Das, P., Malik, P.: On the statistical and $I$ variation of double sequences. Real Anal. Exchange 33 (2008), 351-364. | DOI | MR

[6] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^{*}$-convergence of double sequences. Math. Slovaca 58 (2008), 605-620. | DOI | MR | Zbl

[7] Dems, K.: On $I$-Cauchy sequences. Real Anal. Exchange 30 (2004), 123-128. | MR

[8] Fast, H.: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244. | DOI | MR | Zbl

[9] Fridy, J. A.: On statistical convergence. Analysis 5 (1985), 301-313. | DOI | MR | Zbl

[10] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-Convergence. Real Anal. Exchange 26 (2000/2001), 669-686. | MR

[11] Móricz, F.: Statistical convergence of multiple sequences. Arch. Math. 81 (2003), 82-89. | DOI | MR

[12] Muresaleen, Edely, Osama H. H.: Statistical convergence of double sequences. J. Math. Anal. Appl. 288 (2003), 223-231. | DOI | MR

[13] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245 (2000), 513-527. | DOI | MR | Zbl

[14] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53 (1900), 289-321. | DOI | MR

[15] Savas, E., Muresaleen: {On statistically convergent double sequences of fuzzy numbers}. Information Sciences 162 (2004), 183-192. | DOI | MR

[16] Šalát, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150. | MR

[17] Schoenberg, I. J.: The integrability of certain functions and related summability methods. Amer. Math. Monthly. 66 (1959), 361-375. | DOI | MR | Zbl