Abstract Riemann integrability and measurability
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1123-1139 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
Classification : 26A42, 28C05
Keywords: finitely additive integration; localized convergence; integral representation; weak continuity conditions; horizontal integration
@article{CMJ_2009_59_4_a20,
     author = {de Amo, E. and del Campo, R. and Carrillo, M. D{\'\i}az},
     title = {Abstract {Riemann} integrability and measurability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1123--1139},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563583},
     zbl = {1224.28030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a20/}
}
TY  - JOUR
AU  - de Amo, E.
AU  - del Campo, R.
AU  - Carrillo, M. Díaz
TI  - Abstract Riemann integrability and measurability
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1123
EP  - 1139
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a20/
LA  - en
ID  - CMJ_2009_59_4_a20
ER  - 
%0 Journal Article
%A de Amo, E.
%A del Campo, R.
%A Carrillo, M. Díaz
%T Abstract Riemann integrability and measurability
%J Czechoslovak Mathematical Journal
%D 2009
%P 1123-1139
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a20/
%G en
%F CMJ_2009_59_4_a20
de Amo, E.; del Campo, R.; Carrillo, M. Díaz. Abstract Riemann integrability and measurability. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1123-1139. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a20/

[1] Amo, E. de, Campo, R. del, Carrillo, M. Díaz: Absolute continuity theorems for abstract Riemann integration. Czech. Math. J. 57 (2007), 793-807. | DOI | MR

[2] Amo, E. de, Carrillo, M. Díaz: Local and improper Daniell-Loomis integrals. Rend. Circ. Mat. Palermo 54 (2005), 329-342. | DOI | MR

[3] Anger, B., Portenier, C.: Radon Integrals. Progress in Math. Vol. 103, Birkhäuser, Boston (1992). | MR | Zbl

[4] Aumann, G.: Integralerweiterungen mittels Normen. Arch. Math. 3 (1952), 441-450. | DOI | MR | Zbl

[5] Guerrero, P. Bobillo, Carrillo, M. Díaz: Fonctions fortement-mesurables et mesurables par rapport a un systeme de Loomis. Bull. Soc. Roy. Sci. Ličge 55 (1987), 467-471. | MR

[6] Burrill, C. W.: Measure, Integration and Probability. McGraw-Hill (1972). | MR | Zbl

[7] Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble 5 (1953/54), 131-295. | DOI | MR

[8] Daniell, P. J.: A general form of integral. Ann. of Math. 19 (1917/18), 279-294 JFM 46.0395.01. | DOI

[9] Denneberg, D.: Non-Additive Measure and Integral. Kluwer (1994). | MR | Zbl

[10] Carrillo, M. Díaz, Günzler, H.: Abstract Daniell-Loomis spaces. Bull. Austral. Math. Soc. 53 (1996), 135-142. | DOI | MR

[11] Carrillo, M. Díaz, Günzler, H.: Daniell-Loomis integrals. Rocky Mount. J. Math. 27 (1997), 1075-1087. | MR

[12] Carrillo, M. Díaz, Günzler, H.: Local integral metrics and Daniell-Loomis integrals. Bull. Austral. Math. Soc. 48 (1993), 411-426. | DOI | MR

[13] Carrillo, M. Díaz, Rivas, P. Muñoz: Finitely additive integration: integral extension with local-convergence. Ann. Sci. Math. Québec 17 (1993), 145-154. | MR

[14] Carrillo, M. Díaz, Rivas, P. Muñoz: Positive linear functionals and improper integration. Ann. Sci. Math. Québec 18 (1994), 149-156. | MR

[15] Dunford, N., Schwartz, J. T.: Linear Operartors, part I, General Theory. Interscience, New-York (1957). | MR

[16] Frink, O.: Jordan measure and Riemann integration. Ann. of Math. 34 (1933), 518-526. | DOI | MR | Zbl

[17] Greco, G.: Sulla reppresentazione di funzionali mediante integrali. Rend. Sem. Mat. Padova 66 (1982), 21-42. | MR

[18] Günzler, H.: Integration. Bibliogr. Institut, Mannheim (1985). | MR

[19] Günzler, H.: Linear Functionals which are Integrals. Rend. Sem. Mat. Fis. Milano 43 (1973), 167-176. | DOI | MR

[20] Kindler, J.: A Mazur-Orlicz theorem for submodular set functions. Journ. Math. Analysis Appl. 120 (1986), 533-564. | DOI | MR

[21] König, H.: Measure and Integration. An advanced course in basic procedures and applications. Springer (1997). | MR

[22] Loomis, L. H.: Linear functionals and content. Amer. J. Math. 76 (1954), 168-182. | DOI | MR | Zbl

[23] Luxemburg, W. A. J.: Integration with respect to finitely additive measures. Stud. Econ., Theory 2 (1991), 109-150. | DOI | MR | Zbl

[24] Maharam, D.: Jordan fields and improper integrals. J. Math. Anal. and Appl. 133 (1988), 163-194. | DOI | MR | Zbl

[25] Pfeffer, W. F.: Integrals and Measures. Dekker, New-York (1977). | MR | Zbl

[26] Ridder, J.: Over de Integraldefinities van Riemann en Lebesgue. Christiann Huygens 4 (1925/26), 246-250 JFM 51.0200.05 and correction, ibid. {\it 5} (1927), 205 JFM 53.0208.03.

[27] Schäfke, F. W.: Integrationstheorie I. J. Reine Angew. Math. 244 (1970), 154-176. | MR

[28] Schäfke, F. W.: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals. J. Reine Angew. Math. 289 (1977), 118-134. | MR

[29] Topsøe, F.: On constructions of measures. Proceedings of the Conference on Topology and Measure I, Zinnowitz, 1974, Part 2, 343-381, Ernst-Moritz-Arndt Univ., Greifswald, 1978.