Weak solutions to stochastic differential equations driven by fractional Brownian motion
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 879-907 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \{\frac 12\}$ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.
Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \{\frac 12\}$ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.
Classification : 60G22, 60H10
Keywords: fractional Brownian motion; Girsanov theorem; weak solutions
@article{CMJ_2009_59_4_a2,
     author = {\v{S}nup\'arkov\'a, J.},
     title = {Weak solutions to stochastic differential equations driven by fractional {Brownian} motion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {879--907},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563565},
     zbl = {1224.60149},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a2/}
}
TY  - JOUR
AU  - Šnupárková, J.
TI  - Weak solutions to stochastic differential equations driven by fractional Brownian motion
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 879
EP  - 907
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a2/
LA  - en
ID  - CMJ_2009_59_4_a2
ER  - 
%0 Journal Article
%A Šnupárková, J.
%T Weak solutions to stochastic differential equations driven by fractional Brownian motion
%J Czechoslovak Mathematical Journal
%D 2009
%P 879-907
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a2/
%G en
%F CMJ_2009_59_4_a2
Šnupárková, J. Weak solutions to stochastic differential equations driven by fractional Brownian motion. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 879-907. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a2/

[1] Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29 (2001), 766-801. | DOI | MR

[2] Boufoussi, B., Ouknine, Y.: On a SDE driven by a fractional Brownian motion and with monotone drift. Elect. Comm. Probab. 8 (2003), 122-134. | DOI | MR | Zbl

[3] Cheridito, P., Nualart, D.: Stochastic integral of divergence type with respect to fBm with Hurst parametr $H\in(0,\frac12)$. Ann. I. H. Poincaré Probab. Stat. 41 (2005), 1049-1081. | DOI | MR

[4] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambdridge University Press, Cambridge (1992). | MR | Zbl

[5] Decreusefond, L., Üstunel, A. S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999), 177-214. | DOI | MR

[6] Denis, L., Erraoni, M., Ouknine, Y.: Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise. Stoch. Stoch. Rep. 76 (2004), 409-427. | DOI | MR

[7] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.: Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion. (to appear) in SIAM J. Math. Anal. | MR

[8] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.: Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Chapter 11, 201-222. Springer-Verlag, New York (2006). | MR

[9] Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes. École d'Été de Probabilités de Saint-Flour IV--1974, LNM 480, Springer-Verlag, Berlin (1975), 1-96. | MR | Zbl

[10] Friedman, A.: Stochastic Differential Equations and Applications, vol. I. AP, New York (1975). | MR

[11] Hu, Y.: Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Amer. Math. Soc. 175 (2005). | MR | Zbl

[12] Hu, Y., Nualart, D.: Differential equations driven by Hölder continuous functions of order greater than $1/2$. Stochastic analysis and applications, 399-413, Springer, Berlin (2007). | MR | Zbl

[13] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). | MR | Zbl

[14] Kufner, A., John, O., Fučík, S.: Function Spaces. Academia, Praha (1977). | MR

[15] Kurzweil, J.: Ordinary Differential Equations. Elsevier, Amsterdam (1986). | MR | Zbl

[16] Lyons, T.: Differential Equations Driven by Rough Signals. Rev. Mat. Iberoamericana 14 (1998), 215-310. | DOI | MR | Zbl

[17] Lyons, T.: Differential Equations Driven by Rough Signals (I): an extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994), 451-464. | DOI | MR | Zbl

[18] Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202 (2003), 277-305. | DOI | MR | Zbl

[19] Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions. Stat. Prob. Lett. 51 (2001), 197-206. | DOI | MR

[20] Mishura, Y., Nualart, D.: Weak solutions for stochastic differential equations with additive fractional noise. Stat. Probab. Lett. 70 (2004), 253-261. | DOI | MR

[21] Nourdin, I., Simon, T.: On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006), 907-912. | DOI | MR | Zbl

[22] Nualart, D., Rǎşcanu, A.: Differential Equations driven by Fractional Brownian Motion. Collect. Math. 53 (2002), 55-81. | MR

[23] Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stochastic Process. Appl. 102 (2002), 103-116. | DOI | MR | Zbl

[24] Nualart, D., Ouknine, Y.: Stochastic differential equations with additive fractional noise and locally unbounded drift. Stochastic inequalities and applications, 353-365, Birkhäuser, Basel (2003). | MR | Zbl

[25] Nualart, D.: Stochastic integration with respect to fractional Brownian motion and applications. Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Amer. Math. Soc., Providence, RI (2003). | DOI | MR | Zbl

[26] Zähle, M.: Stochastic differential equations with fractal noise. Math. Nachr. 278 (2005), 1097-1106. | DOI | MR