Keywords: $K$-analytic space; web space; quasi-Suslin space
@article{CMJ_2009_59_4_a19,
author = {Ferrando, J. C. and K\k{a}kol, J. and Lopez Pellicer, M.},
title = {A revised closed graph theorem for {quasi-Suslin} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1115--1122},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563582},
zbl = {1224.46004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a19/}
}
TY - JOUR AU - Ferrando, J. C. AU - Kąkol, J. AU - Lopez Pellicer, M. TI - A revised closed graph theorem for quasi-Suslin spaces JO - Czechoslovak Mathematical Journal PY - 2009 SP - 1115 EP - 1122 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a19/ LA - en ID - CMJ_2009_59_4_a19 ER -
Ferrando, J. C.; Kąkol, J.; Lopez Pellicer, M. A revised closed graph theorem for quasi-Suslin spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1115-1122. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a19/
[1] Cascales, B.: On $K$-analytic locally convex spaces. Arch. Math. 49 (1987), 232-244. | DOI | MR | Zbl
[2] Cascales, B., Orihuela, J.: On compactness in locally convex spaces. Math. Z. 195 (1987), 365-381. | DOI | MR | Zbl
[3] Christensen, J. P. R.: Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10. North Holland Amsterdam (1974). | MR
[4] Comfort, W. W., Remus, D.: Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos. Math. Jap. 39 (1994), 203-210. | MR
[5] Dierolf, P., Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces. Colloq. Math. 39 (1978), 109-116. | DOI | MR | Zbl
[6] Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335 (2007), 1177-1194. | DOI | MR | Zbl
[7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk).
[8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$. (to appear).
[9] Kąkol, J., Pellicer, M. López: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332 (2007), 965-974. | DOI | MR
[10] Kelley, J. L., al., I. Namioka et: Linear Topological Spaces. Van Nostrand London (1963). | MR | Zbl
[11] Kōmura, Y.: On linear topological spaces. Kumamoto J. Sci., Ser. A 5 (1962), 148-157. | MR
[12] Nakamura, M.: On quasi-Suslin space and closed graph theorem. Proc. Japan Acad. 46 (1970), 514-517. | MR
[13] Nakamura, M.: On closed graph theorem. Proc. Japan Acad. 46 (1970), 846-849. | MR | Zbl
[14] Carreras, P. Perez, Bonet, J.: Barrelled Locally Convex Spaces, Vol. 131. North Holland Amsterdam (1987). | MR
[15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets. Academic Press London (1980).
[16] Talagrand, M.: Espaces de Banach faiblement $K$-analytiques. Ann. Math. 110 (1979), 407-438. | DOI | MR
[17] Tkachuk, V. V.: A space $C_p(X) $ is dominated by irrationals if and only if it is $K$-analytic. Acta Math. Hungar. 107 (2005), 253-265. | DOI | MR | Zbl
[18] Valdivia, M.: Topics in Locally Convex Spaces. North-Holland Amsterdam (1982). | MR | Zbl
[19] Valdivia, M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35 (1987), 149-168. | MR | Zbl