Comultiplication modules over a pullback of Dedekind domains
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1103-1114
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
First, we give complete description of the comultiplication modules over a Dedekind domain. Second, if $R$ is the pullback of two local Dedekind domains, then we classify all indecomposable comultiplication $R$-modules and establish a connection between the comultiplication modules and the pure-injective modules over such domains.
Classification :
13C05, 13C13, 16D70
Keywords: pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules
Keywords: pullback; separated modules and representations; non-separated modules; comultiplication modules; dedekind domain; pure-injective modules; Prüfer modules
@article{CMJ_2009_59_4_a18,
author = {Atani, Reza Ebrahimi and Atani, Shahabaddin Ebrahimi},
title = {Comultiplication modules over a pullback of {Dedekind} domains},
journal = {Czechoslovak Mathematical Journal},
pages = {1103--1114},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563581},
zbl = {1224.13012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a18/}
}
TY - JOUR AU - Atani, Reza Ebrahimi AU - Atani, Shahabaddin Ebrahimi TI - Comultiplication modules over a pullback of Dedekind domains JO - Czechoslovak Mathematical Journal PY - 2009 SP - 1103 EP - 1114 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a18/ LA - en ID - CMJ_2009_59_4_a18 ER -
Atani, Reza Ebrahimi; Atani, Shahabaddin Ebrahimi. Comultiplication modules over a pullback of Dedekind domains. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1103-1114. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a18/