Keywords: poset; Boolean algebra; cover matrix; spectra; multiplicities
@article{CMJ_2009_59_4_a15,
author = {An{\dj}eli\'c, Milica and da Fonseca, C. M.},
title = {Cover matrices of posets and their spectra},
journal = {Czechoslovak Mathematical Journal},
pages = {1077--1085},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563578},
zbl = {1224.05292},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a15/}
}
Anđelić, Milica; da Fonseca, C. M. Cover matrices of posets and their spectra. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1077-1085. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a15/
[1] Alon, N.: Eigenvalues and expanders. Combinatorica 6 (1986), 83-96. | DOI | MR | Zbl
[2] Ballantine, C. M., Frechette, S. M., Little, J. B.: Determinants associated to zeta matrices of posets. Linear Algebra Appl. 411 (2005), 364-370. | MR | Zbl
[3] Chihara, T. S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978). | MR | Zbl
[4] Conflitti, A.: Boolean algebras and spectrum. Carpathian J. Math. 24 (2008), 20-25. | MR | Zbl
[5] Fonseca, C. M. da: On the location of the eigenvalues of Jacobi matrices. Appl. Math. Lett. 19 (2006), 1168-1174. | DOI | MR | Zbl
[6] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press (1985). | MR | Zbl
[7] Krattenthaler, C.: Advanced determinant calculus. Sém. Lothar. Combin. 42 (1999), Art.B42q. | MR | Zbl
[8] Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411 (2005), 68-166. | MR | Zbl
[9] Chen, Z.: Spectra of extended double cover graphs. Czech. Math. J. 54 (2004), 1077-1082. | DOI | MR | Zbl
[10] Neggers, J., Kim, H. S.: Basic Posets. World Scientific, Singapore (1998). | MR | Zbl
[11] Ng, S. L.: Posets and protocols---picking the right three-party protocol. IEEE J. Sel. Areas Comm. 21 (2003), 55-61. | DOI
[12] Stanley, R.: Enumerative Combinatorics, Vol. 1, 2nd ed. Cambridge University Press, Cambridge (1997). | MR | Zbl
[13] Trotter, W. T.: Combinatorics and Partially Ordered Sets. Johns Hopkins University Press, Baltimore (1992). | MR | Zbl