On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1039-1058 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.
We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.
Classification : 30D30, 30D35
Keywords: entire functions; order of growth; shared values; uniqueness theorems
@article{CMJ_2009_59_4_a13,
     author = {Li, Xiao-Min and Yi, Hong-Xun},
     title = {On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1039--1058},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563576},
     zbl = {1224.30144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a13/}
}
TY  - JOUR
AU  - Li, Xiao-Min
AU  - Yi, Hong-Xun
TI  - On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1039
EP  - 1058
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a13/
LA  - en
ID  - CMJ_2009_59_4_a13
ER  - 
%0 Journal Article
%A Li, Xiao-Min
%A Yi, Hong-Xun
%T On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial
%J Czechoslovak Mathematical Journal
%D 2009
%P 1039-1058
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a13/
%G en
%F CMJ_2009_59_4_a13
Li, Xiao-Min; Yi, Hong-Xun. On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1039-1058. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a13/

[1] Brück, R.: On entire functions which share one value CM with their first derivative. Results in Math. 30 (1996), 21-24. | DOI | MR

[2] Chen, Z. X., Yang, C. C.: Some further results on the zeros and growths of entire solutions of second order linear differential equation. Kodai Math J. 22 (1999), 273-285. | DOI | MR

[3] Chen, Z. X.: The growth of solutions of $f''+{\rm e}^{-z}f'+Q(z)f=0$. Science in China (A) 31 (2001), 775-784. | MR

[4] Chang, J. M., Fang, M. L.: Entire functions that share a small function with their derivatives. Complex Variables Theory Appl. 49 (2004), 871-895. | DOI | MR | Zbl

[5] Gundersen, G. G., Yang, L. Z.: Entire functions that share one value with one or two of their derivatives. J. Math. Anal. Appl. 223 (1998), 88-95. | DOI | MR | Zbl

[6] Hayman, W. K.: Meromorphic Functions. The Clarendon Press Oxford (1964). | MR | Zbl

[7] He, Y. Z., Xiao, X. Z.: Algebroid Functions and Ordinary Differential Equations. Science Press Beijing (1988), Chinese.

[8] Jank, G., Volkmann, L.: Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser Basel-Boston (1985). | MR | Zbl

[9] Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter Berlin (1993). | MR

[10] Ngoan, V., Ostrovskij, I. V.: The logarithmic derivative of a meromorphic function. (Russian). Dokl. Akad. Nauk Arm. SSR 41 (1965), 272-277. | MR

[11] Rubel, L., Yang, C. C.: Values shared by an entire function and its derivative. in``Complex Analysis, Kentucky 1976'' (Proc. Conf.), Lecture Notes in Mathematics, Vol. 599, pp. 101-103, Springer-Verlag, Berlin, 1977. | MR | Zbl

[12] Valiron, G.: Lectures on the General Theory of Integral Functions. Edouarard Privat Toulouse (1923) JFM 50.0254.01.

[13] Wang, J. P.: Entire functions that share a polynomial with one of their derivatives. Kodai Math J. 27 (2004), 144-151. | DOI | MR | Zbl

[14] Yang, L.: Value Distribution Theory. Springer-Verlag Berlin Heidelberg (1993). | MR | Zbl

[15] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Dordrecht/Boston/London (2003). | MR | Zbl

[16] Yang, L. Z.: Solution of a differential equation and its applications. Kodai Math J. 22 (1999), 458-464. | DOI | MR | Zbl

[17] Chuang, C. T.: Sur la comparaison de la croissance d'une fonction méromorphe et celle de sa dérivée. Bull. Sci. Math. 75 (1951), 171-190. | MR