Some examples of continuous images of Radon-Nikodým compact spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1027-1038 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.
We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.
Classification : 46B26, 54G12
Keywords: Radon-Nikodým compact
@article{CMJ_2009_59_4_a12,
     author = {Arvanitakis, Alexander D. and Avil\'es, Antonio},
     title = {Some examples of continuous images of {Radon-Nikod\'ym} compact spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1027--1038},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563575},
     zbl = {1224.46030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a12/}
}
TY  - JOUR
AU  - Arvanitakis, Alexander D.
AU  - Avilés, Antonio
TI  - Some examples of continuous images of Radon-Nikodým compact spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1027
EP  - 1038
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a12/
LA  - en
ID  - CMJ_2009_59_4_a12
ER  - 
%0 Journal Article
%A Arvanitakis, Alexander D.
%A Avilés, Antonio
%T Some examples of continuous images of Radon-Nikodým compact spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 1027-1038
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a12/
%G en
%F CMJ_2009_59_4_a12
Arvanitakis, Alexander D.; Avilés, Antonio. Some examples of continuous images of Radon-Nikodým compact spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1027-1038. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a12/

[1] Arvanitakis, A. D.: Some remarks on Radon-Nikodým compact spaces. Fund. Math. 172 (2002), 41-60. | DOI | MR | Zbl

[2] Avilés, A.: Radon-Nikodým compact spaces of low weight and Banach spaces. Studia Math. 166 (2005), 71-82. | DOI | MR

[3] Avilés, A.: Linearly ordered Radon-Nikodým compact spaces. Topology Appl. 154 (2007), 404-409. | DOI | MR

[4] Fabian, M.: Gâteaux differentiability of convex functions and topology. Weak Asplund spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. New York. | MR | Zbl

[5] Fabian, M.: Overclasses of the class of Radon-Nikodým compact spaces. Methods in Banach space theory. Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series 337 197-214 (2006). | MR | Zbl

[6] Fabian, M., Heisler, M., Matoušková, E.: Remarks on continuous images of Radon-Nikodým compacta. Commentat. Math. Univ. Carol. 39 (1998), 59-69. | MR

[7] Iancu, M., Watson, S.: On continuous images of Radon-Nikodým compact spaces through the metric characterization. Topol. Proc. 26 (2001-2002), 677-693. | MR

[8] Namioka, I.: Radon-Nikodým compact spaces and fragmentability. Mathematika 34 (1987), 258-281. | DOI | MR | Zbl

[9] Namioka, I.: On generalizations of Radon-Nikodým compact spaces. Proceedings of the 16th Summer Conference on General Topology and its Applications (New York). Topology Proc. 26 (2001/02), 741-750. | MR

[10] Orihuela, J., Schachermayer, W., Valdivia, M.: Every Radon-Nikodým Corson compact space is Eberlein compact. Studia Math. 98 (1991), 157-174. | DOI | MR | Zbl

[11] Douwen, E. K. van: The integers and topology. Handbook of set-theoretic topology, 111-167, North-Holland, Amsterdam (1984). | MR