Statuses and branch-weights of weighted trees
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1019-1025 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we show that in a tree with vertex weights the vertices with the second smallest status and those with the second smallest branch-weight are the same.
In this paper we show that in a tree with vertex weights the vertices with the second smallest status and those with the second smallest branch-weight are the same.
Classification : 05C05, 05C12
Keywords: tree; status; branch-weight; median; centroid; second median; second centroid
@article{CMJ_2009_59_4_a11,
     author = {Lin, Chiang and Shang, Jen-Ling},
     title = {Statuses and branch-weights of weighted trees},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1025},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563574},
     zbl = {1224.05148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a11/}
}
TY  - JOUR
AU  - Lin, Chiang
AU  - Shang, Jen-Ling
TI  - Statuses and branch-weights of weighted trees
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1019
EP  - 1025
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a11/
LA  - en
ID  - CMJ_2009_59_4_a11
ER  - 
%0 Journal Article
%A Lin, Chiang
%A Shang, Jen-Ling
%T Statuses and branch-weights of weighted trees
%J Czechoslovak Mathematical Journal
%D 2009
%P 1019-1025
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a11/
%G en
%F CMJ_2009_59_4_a11
Lin, Chiang; Shang, Jen-Ling. Statuses and branch-weights of weighted trees. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1019-1025. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a11/

[1] Entringer, R. C., Jackson, D. E., Snyder, D. A.: Distance in graphs. Czech. Math. J. 26 (1976), 283-296. | MR | Zbl

[2] Kang, A., Ault, D.: Some properties of a centroid of a free tree. Inform. Process. Lett. 4 (1975), 18-20. | DOI | MR | Zbl

[3] Kariv, O., Hakimi, S. L.: An algorithmic approach to network location problems. II: The $p$-medians, SIAM J. Appl. Math. 37 (1979), 539-560. | DOI | MR | Zbl

[4] Zelinka, B.: Medians and peripherians of trees. Arch. Math. (Brno) 4 (1968), 87-95. | MR | Zbl