Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1005-1017 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.
Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.
Classification : 26A39, 28A35, 46E30, 46E99
Keywords: Henstock-Kurzweil integral; bounded linear functional; bounded variation
@article{CMJ_2009_59_4_a10,
     author = {Lee, Tuo-Yeong},
     title = {Bounded linear functionals on the space of {Henstock-Kurzweil} integrable functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1005--1017},
     year = {2009},
     volume = {59},
     number = {4},
     mrnumber = {2563573},
     zbl = {1224.26026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a10/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1005
EP  - 1017
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a10/
LA  - en
ID  - CMJ_2009_59_4_a10
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
%J Czechoslovak Mathematical Journal
%D 2009
%P 1005-1017
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a10/
%G en
%F CMJ_2009_59_4_a10
Lee, Tuo-Yeong. Bounded linear functionals on the space of Henstock-Kurzweil integrable functions. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1005-1017. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a10/

[1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289-293. | DOI | MR | Zbl

[2] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4, AMS (1994). | DOI | MR | Zbl

[3] Hildebrandt, T. H., Schoenberg, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions. The Annals of Mathematics (2) 34 317-328. | MR | Zbl

[4] Kreyszig, Erwin: Introductory Functional Analysis with Applications. John Wiley & Sons, New York-London-Sydney (1978). | MR | Zbl

[5] Kurzweil, J.: On multiplication of Perron integrable functions. Czech. Math. J 23 (1973), 542-566. | MR | Zbl

[6] Peng-Yee, Lee: Lanzhou Lectures on Henstock Integration. World Scientific (1989). | MR

[7] Peng-Yee, Lee, Výborný, R.: The integral, An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). | MR

[8] Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee: Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math Soc. 54 (1996), 441-449. | DOI | MR

[9] Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee: On Henstock integrability in Euclidean spaces. Real Anal. Exchange 22 (1996/97), 382-389. | MR

[10] Tuo-Yeong, Lee: Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149-160. | MR

[11] Tuo-Yeong, Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677-700. | MR

[12] Tuo-Yeong, Lee: A full characterization of multipliers for the strong $\rho$-integral in the Euclidean space. Czech. Math. J. 54 (2004), 657-674. | DOI | MR

[13] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677-692. | DOI | MR

[14] Tuo-Yeong, Lee: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. | DOI | MR

[15] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741-745. | DOI | MR

[16] Tuo-Yeong, Lee: A multidimensional integration by parts formula for the Henstock-Kurzweil integral. Math. Bohem. 133 (2008), 63-74. | MR

[17] Liu, G. Q.: The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105-121. | MR | Zbl

[18] Mikusiński, Piotr, Ostaszewski, K.: The space of Henstock integrable functions II. In New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, Editors), Lecture Notes in Math. 1419 (Springer-Verlag, Berlin, Heideberg, New York 1990) 136-149. | MR

[19] Ostaszewski, K. M.: The space of Henstock integrable functions of two variables. Internat. J. Math. and Math. Sci. 11 (1988), 15-22. | DOI | MR | Zbl

[20] Sargent, W. L. C.: On the integrability of a product. J. London Math. Soc. 23 (1948), 28-34. | DOI | MR | Zbl

[21] Sargent, W. L. C.: On linear functionals in spaces of conditionally integrable functions. Quart. J. Math., Oxford Ser. 1 (1950), 288-298. | DOI | MR | Zbl